Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamic...

Full description

Bibliographic Details
Main Authors: Markus M. Knodel, Arne Nägel, Sebastian Reiter, Andreas Vogel, Paul Targett-Adams, John McLauchlan, Eva Herrmann, Gabriel Wittum
Format: Article
Language:English
Published: MDPI AG 2018-01-01
Series:Viruses
Subjects:
Online Access:http://www.mdpi.com/1999-4915/10/1/28
id doaj-f7cd709d58a5428d8b7438cddcc2ec8a
record_format Article
spelling doaj-f7cd709d58a5428d8b7438cddcc2ec8a2020-11-25T01:17:20ZengMDPI AGViruses1999-49152018-01-011012810.3390/v10010028v10010028Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER SurfaceMarkus M. Knodel0Arne Nägel1Sebastian Reiter2Andreas Vogel3Paul Targett-Adams4John McLauchlan5Eva Herrmann6Gabriel Wittum7Goethe Center for Scientific Computing (G-CSC), Goethe Universität Frankfurt, Kettenhofweg 139, 60325 Frankfurt am Main, GermanyGoethe Center for Scientific Computing (G-CSC), Goethe Universität Frankfurt, Kettenhofweg 139, 60325 Frankfurt am Main, GermanyGoethe Center for Scientific Computing (G-CSC), Goethe Universität Frankfurt, Kettenhofweg 139, 60325 Frankfurt am Main, GermanyGoethe Center for Scientific Computing (G-CSC), Goethe Universität Frankfurt, Kettenhofweg 139, 60325 Frankfurt am Main, GermanyMedivir AB, Department of Biology, Huddinge 141 22, SwedenMRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, UKDepartment of Medicine, Institute for Biostatistics and Mathematic Modeling, Goethe Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, GermanyGoethe Center for Scientific Computing (G-CSC), Goethe Universität Frankfurt, Kettenhofweg 139, 60325 Frankfurt am Main, GermanyExploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.http://www.mdpi.com/1999-4915/10/1/28computational virologyhepatitis C virus (HCV)viral dynamicswithin-host viral modellingparameter estimation3D spatio-temporal resolved mathematical modelsrealistic geometries(surface) partial differential equationsFinite Volumesmassively parallel multigrid solvers
collection DOAJ
language English
format Article
sources DOAJ
author Markus M. Knodel
Arne Nägel
Sebastian Reiter
Andreas Vogel
Paul Targett-Adams
John McLauchlan
Eva Herrmann
Gabriel Wittum
spellingShingle Markus M. Knodel
Arne Nägel
Sebastian Reiter
Andreas Vogel
Paul Targett-Adams
John McLauchlan
Eva Herrmann
Gabriel Wittum
Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface
Viruses
computational virology
hepatitis C virus (HCV)
viral dynamics
within-host viral modelling
parameter estimation
3D spatio-temporal resolved mathematical models
realistic geometries
(surface) partial differential equations
Finite Volumes
massively parallel multigrid solvers
author_facet Markus M. Knodel
Arne Nägel
Sebastian Reiter
Andreas Vogel
Paul Targett-Adams
John McLauchlan
Eva Herrmann
Gabriel Wittum
author_sort Markus M. Knodel
title Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface
title_short Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface
title_full Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface
title_fullStr Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface
title_full_unstemmed Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface
title_sort quantitative analysis of hepatitis c ns5a viral protein dynamics on the er surface
publisher MDPI AG
series Viruses
issn 1999-4915
publishDate 2018-01-01
description Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.
topic computational virology
hepatitis C virus (HCV)
viral dynamics
within-host viral modelling
parameter estimation
3D spatio-temporal resolved mathematical models
realistic geometries
(surface) partial differential equations
Finite Volumes
massively parallel multigrid solvers
url http://www.mdpi.com/1999-4915/10/1/28
work_keys_str_mv AT markusmknodel quantitativeanalysisofhepatitiscns5aviralproteindynamicsontheersurface
AT arnenagel quantitativeanalysisofhepatitiscns5aviralproteindynamicsontheersurface
AT sebastianreiter quantitativeanalysisofhepatitiscns5aviralproteindynamicsontheersurface
AT andreasvogel quantitativeanalysisofhepatitiscns5aviralproteindynamicsontheersurface
AT paultargettadams quantitativeanalysisofhepatitiscns5aviralproteindynamicsontheersurface
AT johnmclauchlan quantitativeanalysisofhepatitiscns5aviralproteindynamicsontheersurface
AT evaherrmann quantitativeanalysisofhepatitiscns5aviralproteindynamicsontheersurface
AT gabrielwittum quantitativeanalysisofhepatitiscns5aviralproteindynamicsontheersurface
_version_ 1725146515281805312