Inertial Parameter Identification in Robotics: A Survey

This work aims at reviewing, analyzing and comparing a range of state-of-the-art approaches to inertial parameter identification in the context of robotics. We introduce “<i>BIRDy</i> (Benchmark for Identification of Robot Dynamics)”, an open-source Matlab toolbox, allowing a systematic...

Full description

Bibliographic Details
Main Authors: Quentin Leboutet, Julien Roux, Alexandre Janot, Julio Rogelio Guadarrama-Olvera, Gordon Cheng
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/9/4303
id doaj-f84e4b2d67f24be1adadd808d13954bb
record_format Article
spelling doaj-f84e4b2d67f24be1adadd808d13954bb2021-05-31T23:34:51ZengMDPI AGApplied Sciences2076-34172021-05-01114303430310.3390/app11094303Inertial Parameter Identification in Robotics: A SurveyQuentin Leboutet0Julien Roux1Alexandre Janot2Julio Rogelio Guadarrama-Olvera3Gordon Cheng4Institute for Cognitive Systems, Technical University of Munich, Arcistrasse 21, 80333 Munich, GermanyLIRMM, Université de Montpellier, 34095 Montpellier, FranceONERA the French Aerospacelab, 6, Chemin de la Vauve aux Granges, 91123 Palaiseau, FranceInstitute for Cognitive Systems, Technical University of Munich, Arcistrasse 21, 80333 Munich, GermanyInstitute for Cognitive Systems, Technical University of Munich, Arcistrasse 21, 80333 Munich, GermanyThis work aims at reviewing, analyzing and comparing a range of state-of-the-art approaches to inertial parameter identification in the context of robotics. We introduce “<i>BIRDy</i> (Benchmark for Identification of Robot Dynamics)”, an open-source Matlab toolbox, allowing a systematic and formal performance assessment of the considered identification algorithms on either simulated or real serial robot manipulators. Seventeen of the most widely used approaches found in the scientific literature are implemented and compared to each other, namely: the Inverse Dynamic Identification Model with Ordinary, Weighted, Iteratively Reweighted and Total Least-Squares (IDIM-OLS, -WLS, -IRLS, -TLS); the Instrumental Variables method (IDIM-IV), the Maximum Likelihood (ML) method; the Direct and Inverse Dynamic Identification Model approach (DIDIM); the Closed-Loop Output Error (CLOE) method; the Closed-Loop Input Error (CLIE) method; the Direct Dynamic Identification Model with Nonlinear Kalman Filtering (DDIM-NKF), the Adaline Neural Network (AdaNN), the Hopfield-Tank Recurrent Neural Network (HTRNN) and eventually a set of Physically Consistent (PC-) methods allowing the enforcement of parameter physicality using Semi-Definite Programming, namely the PC-IDIM-OLS, -WLS, -IRLS, PC-IDIM-IV, and PC-DIDIM. BIRDy is robot-agnostic and features a complete inertial parameter identification pipeline, from the generation of symbolic kinematic and dynamic models to the identification process itself. This includes functionalities for excitation trajectory computation as well as the collection and pre-processing of experiment data. In this work, the proposed methods are first evaluated in simulation, following a Monte Carlo scheme on models of the 6-DoF TX40 and RV2SQ industrial manipulators, before being tested on the real robot platforms. The robustness, precision, computational efficiency and context of application the different methods are investigated and discussed.https://www.mdpi.com/2076-3417/11/9/4303dynamic parameters identificationperformance evaluation and benchmarking
collection DOAJ
language English
format Article
sources DOAJ
author Quentin Leboutet
Julien Roux
Alexandre Janot
Julio Rogelio Guadarrama-Olvera
Gordon Cheng
spellingShingle Quentin Leboutet
Julien Roux
Alexandre Janot
Julio Rogelio Guadarrama-Olvera
Gordon Cheng
Inertial Parameter Identification in Robotics: A Survey
Applied Sciences
dynamic parameters identification
performance evaluation and benchmarking
author_facet Quentin Leboutet
Julien Roux
Alexandre Janot
Julio Rogelio Guadarrama-Olvera
Gordon Cheng
author_sort Quentin Leboutet
title Inertial Parameter Identification in Robotics: A Survey
title_short Inertial Parameter Identification in Robotics: A Survey
title_full Inertial Parameter Identification in Robotics: A Survey
title_fullStr Inertial Parameter Identification in Robotics: A Survey
title_full_unstemmed Inertial Parameter Identification in Robotics: A Survey
title_sort inertial parameter identification in robotics: a survey
publisher MDPI AG
series Applied Sciences
issn 2076-3417
publishDate 2021-05-01
description This work aims at reviewing, analyzing and comparing a range of state-of-the-art approaches to inertial parameter identification in the context of robotics. We introduce “<i>BIRDy</i> (Benchmark for Identification of Robot Dynamics)”, an open-source Matlab toolbox, allowing a systematic and formal performance assessment of the considered identification algorithms on either simulated or real serial robot manipulators. Seventeen of the most widely used approaches found in the scientific literature are implemented and compared to each other, namely: the Inverse Dynamic Identification Model with Ordinary, Weighted, Iteratively Reweighted and Total Least-Squares (IDIM-OLS, -WLS, -IRLS, -TLS); the Instrumental Variables method (IDIM-IV), the Maximum Likelihood (ML) method; the Direct and Inverse Dynamic Identification Model approach (DIDIM); the Closed-Loop Output Error (CLOE) method; the Closed-Loop Input Error (CLIE) method; the Direct Dynamic Identification Model with Nonlinear Kalman Filtering (DDIM-NKF), the Adaline Neural Network (AdaNN), the Hopfield-Tank Recurrent Neural Network (HTRNN) and eventually a set of Physically Consistent (PC-) methods allowing the enforcement of parameter physicality using Semi-Definite Programming, namely the PC-IDIM-OLS, -WLS, -IRLS, PC-IDIM-IV, and PC-DIDIM. BIRDy is robot-agnostic and features a complete inertial parameter identification pipeline, from the generation of symbolic kinematic and dynamic models to the identification process itself. This includes functionalities for excitation trajectory computation as well as the collection and pre-processing of experiment data. In this work, the proposed methods are first evaluated in simulation, following a Monte Carlo scheme on models of the 6-DoF TX40 and RV2SQ industrial manipulators, before being tested on the real robot platforms. The robustness, precision, computational efficiency and context of application the different methods are investigated and discussed.
topic dynamic parameters identification
performance evaluation and benchmarking
url https://www.mdpi.com/2076-3417/11/9/4303
work_keys_str_mv AT quentinleboutet inertialparameteridentificationinroboticsasurvey
AT julienroux inertialparameteridentificationinroboticsasurvey
AT alexandrejanot inertialparameteridentificationinroboticsasurvey
AT juliorogelioguadarramaolvera inertialparameteridentificationinroboticsasurvey
AT gordoncheng inertialparameteridentificationinroboticsasurvey
_version_ 1721417236659306496