The Vese-Chan model without redundant parameter estimation for multiphase image segmentation

Abstract The Vese-Chan model for multiphase image segmentation uses m binary label functions to construct 2 m characteristic functions for different phases/regions systematically; the terms in this model have moderate degrees comparing with other schemes of multiphase segmentation. However, if the n...

Full description

Bibliographic Details
Main Authors: Jie Wang, Zisen Xu, Zhenkuan Pan, Weibo Wei, Guodong Wang
Format: Article
Language:English
Published: SpringerOpen 2020-01-01
Series:EURASIP Journal on Image and Video Processing
Subjects:
Online Access:https://doi.org/10.1186/s13640-019-0488-6
id doaj-f8541392942044c8a91b6adb976acf44
record_format Article
spelling doaj-f8541392942044c8a91b6adb976acf442021-01-17T12:16:44ZengSpringerOpenEURASIP Journal on Image and Video Processing1687-52812020-01-012020111710.1186/s13640-019-0488-6The Vese-Chan model without redundant parameter estimation for multiphase image segmentationJie Wang0Zisen Xu1Zhenkuan Pan2Weibo Wei3Guodong Wang4College of Computer Science and Technology, Qingdao UniversityThe Affiliated Hospital of Qingdao UniversityCollege of Computer Science and Technology, Qingdao UniversityCollege of Computer Science and Technology, Qingdao UniversityCollege of Computer Science and Technology, Qingdao UniversityAbstract The Vese-Chan model for multiphase image segmentation uses m binary label functions to construct 2 m characteristic functions for different phases/regions systematically; the terms in this model have moderate degrees comparing with other schemes of multiphase segmentation. However, if the number of desired regions is less than 2 m , there exist some empty phases which need costly parameter estimation for segmentation purpose. In this paper, we propose an automatic construction method for characteristic functions via transformation between a natural number and its binary expression, and thus, the characteristic functions of empty phases can be written and recognized naturally. In order to avoid the redundant parameter estimations of these regions, we add area constraints in the original model to replace the corresponding region terms to preserve its systematic form and achieve high efficiency. Additionally, we design the alternating direction method of multipliers (ADMM) for the proposed modified model to decompose it into some simple sub-problems of optimization, which can be solved using Gauss-Seidel iterative method or generalized soft thresholding formulas. Some numerical examples for gray images and color images are presented finally to demonstrate that the proposed model has the same or better segmentation effects as the original one, and it reduces the estimation of redundant parameters and improves the segmentation efficiency.https://doi.org/10.1186/s13640-019-0488-6Multiphase image segmentationVese-Chan modelParameter estimationBinary label functionAlternating direction method of multipliers
collection DOAJ
language English
format Article
sources DOAJ
author Jie Wang
Zisen Xu
Zhenkuan Pan
Weibo Wei
Guodong Wang
spellingShingle Jie Wang
Zisen Xu
Zhenkuan Pan
Weibo Wei
Guodong Wang
The Vese-Chan model without redundant parameter estimation for multiphase image segmentation
EURASIP Journal on Image and Video Processing
Multiphase image segmentation
Vese-Chan model
Parameter estimation
Binary label function
Alternating direction method of multipliers
author_facet Jie Wang
Zisen Xu
Zhenkuan Pan
Weibo Wei
Guodong Wang
author_sort Jie Wang
title The Vese-Chan model without redundant parameter estimation for multiphase image segmentation
title_short The Vese-Chan model without redundant parameter estimation for multiphase image segmentation
title_full The Vese-Chan model without redundant parameter estimation for multiphase image segmentation
title_fullStr The Vese-Chan model without redundant parameter estimation for multiphase image segmentation
title_full_unstemmed The Vese-Chan model without redundant parameter estimation for multiphase image segmentation
title_sort vese-chan model without redundant parameter estimation for multiphase image segmentation
publisher SpringerOpen
series EURASIP Journal on Image and Video Processing
issn 1687-5281
publishDate 2020-01-01
description Abstract The Vese-Chan model for multiphase image segmentation uses m binary label functions to construct 2 m characteristic functions for different phases/regions systematically; the terms in this model have moderate degrees comparing with other schemes of multiphase segmentation. However, if the number of desired regions is less than 2 m , there exist some empty phases which need costly parameter estimation for segmentation purpose. In this paper, we propose an automatic construction method for characteristic functions via transformation between a natural number and its binary expression, and thus, the characteristic functions of empty phases can be written and recognized naturally. In order to avoid the redundant parameter estimations of these regions, we add area constraints in the original model to replace the corresponding region terms to preserve its systematic form and achieve high efficiency. Additionally, we design the alternating direction method of multipliers (ADMM) for the proposed modified model to decompose it into some simple sub-problems of optimization, which can be solved using Gauss-Seidel iterative method or generalized soft thresholding formulas. Some numerical examples for gray images and color images are presented finally to demonstrate that the proposed model has the same or better segmentation effects as the original one, and it reduces the estimation of redundant parameters and improves the segmentation efficiency.
topic Multiphase image segmentation
Vese-Chan model
Parameter estimation
Binary label function
Alternating direction method of multipliers
url https://doi.org/10.1186/s13640-019-0488-6
work_keys_str_mv AT jiewang thevesechanmodelwithoutredundantparameterestimationformultiphaseimagesegmentation
AT zisenxu thevesechanmodelwithoutredundantparameterestimationformultiphaseimagesegmentation
AT zhenkuanpan thevesechanmodelwithoutredundantparameterestimationformultiphaseimagesegmentation
AT weibowei thevesechanmodelwithoutredundantparameterestimationformultiphaseimagesegmentation
AT guodongwang thevesechanmodelwithoutredundantparameterestimationformultiphaseimagesegmentation
AT jiewang vesechanmodelwithoutredundantparameterestimationformultiphaseimagesegmentation
AT zisenxu vesechanmodelwithoutredundantparameterestimationformultiphaseimagesegmentation
AT zhenkuanpan vesechanmodelwithoutredundantparameterestimationformultiphaseimagesegmentation
AT weibowei vesechanmodelwithoutredundantparameterestimationformultiphaseimagesegmentation
AT guodongwang vesechanmodelwithoutredundantparameterestimationformultiphaseimagesegmentation
_version_ 1724335196301426688