Fluorescent Labeling of Hyaluronic Acid-Chitosan Nanocarriers by Protein-Stabilized Gold Nanoclusters

In medical research the visualization of drug carrier accumulation and release of the loaded drugs in vivo is an important field. In this work, two protein-stabilized gold nanoclusters (Au NCs) as effective fluorescent reporters (FRs) were investigated for labeling of biocompatible chitosan-modified...

Full description

Bibliographic Details
Main Authors: Árpád Turcsányi, Ditta Ungor, Edit Csapó
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/10/12/1113
Description
Summary:In medical research the visualization of drug carrier accumulation and release of the loaded drugs in vivo is an important field. In this work, two protein-stabilized gold nanoclusters (Au NCs) as effective fluorescent reporters (FRs) were investigated for labeling of biocompatible chitosan-modified hyaluronic acid based nanocarriers having two different structures. The colloid stability of the labeled carriers was studied by dynamic light scattering and Zeta potential measurements, while the changes in the fluorescence of the lysozyme- (LYZ) and bovine serum albumin (BSA)-stabilized Au NCs were analyzed by spectrofluorimetry and confocal fluorescent microscopy. We found that the labeling was effective with a wide range of marker:carrier mass ratios, and the fluorescence of the NCs and the colloid stability of the complexes were retained. Labeling during preparation and subsequent labeling were compared, and based on composition (nanocluster:carrier mass ratio) and structure of the complex systems we preferred the latter method, as it left the Au NCs free for further modifications. Considering both marker:carrier mass ratios and emission intensities, the LYZ-stabilized Au NCs proved to be better labels. The core-shell type carrier formulations showed increased fluorescence with LYZ-stabilized NCs, presumably from aggregation induced emission.
ISSN:2073-4352