AI-Driven Multiobjective Scheduling Algorithm of Flood Control Materials Based on Pareto Artificial Bee Colony
Considering the competition between rescue points, we use artificial intelligence (AI) driven Internet of Thing (IoT) and regional material storage data to propose a multiobjective scheduling algorithm of flood control materials based on Pareto artificial bee colony (MSA_PABC). To address the schedu...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2021-01-01
|
Series: | Wireless Communications and Mobile Computing |
Online Access: | http://dx.doi.org/10.1155/2021/5557543 |
id |
doaj-f86489b472e04fc69527d2a149f4b079 |
---|---|
record_format |
Article |
spelling |
doaj-f86489b472e04fc69527d2a149f4b0792021-07-19T01:04:26ZengHindawi-WileyWireless Communications and Mobile Computing1530-86772021-01-01202110.1155/2021/5557543AI-Driven Multiobjective Scheduling Algorithm of Flood Control Materials Based on Pareto Artificial Bee ColonyBanteng Liu0Junjie Lu1Yourong Chen2Ping Sun3Kehua Zhao4Meng Han5Rengong Zhang6Zegao Yin7College of Information Science and TechnologySchool of Computer Science and Artificial IntelligenceCollege of Information Science and TechnologyCollege of Information Science and TechnologyCollege of Information Science and TechnologyData-Driven Intelligence Research (DIR) LabZhejiang Yugong Information Technology Limited CompanyCollege of EngineeringConsidering the competition between rescue points, we use artificial intelligence (AI) driven Internet of Thing (IoT) and regional material storage data to propose a multiobjective scheduling algorithm of flood control materials based on Pareto artificial bee colony (MSA_PABC). To address the scheduling of flood control materials, the multiple types of flood control materials, the multiple disaster sites, and entertain both emergency and fairness of rescue need to be considered comprehensively. The MSA_PABC has the constraints such as storage quantity constraint of warehouse materials, material demand constraint, and maximum transportation distance of flood control materials. We establish the scheduling optimization model of flood control materials for each disaster rescue point and the total scheduling optimization model for all flood control materials. Then, MSA_PABC uses the modified Pareto artificial bee colony algorithm to solve the multiobjective models. Three types of initialization strategies are proposed to calculate the fitness of each rescue point and the overall evaluation value of the food source. We propose the employ bee operations such as niche technology and local search of the variable neighborhood, the onlooker bee operations such as Pareto nondominated sorting and crossover operation, the scout bee operations such as maximum evolutionary threshold, and end elimination mechanism. Finally, our proposed solution obtains the nondominated solution set and its optimal solution. The experimental results show that no matter how the number of rescue points changes, MSA_PABC can find the nondominated solution set and optimal solution quickly. It improves the convergence rate of MSA_PABC and material satisfaction rate. Our solution also reduces the average maximum transportation distance, the standard deviation of maximum transportation distance, and the standard deviation of material satisfaction rate. The evaluation also demonstrates MSA_PABC outperforms the state-of-arts such as ABC (artificial bee colony), NSGA2 (nondominated sorting genetic algorithm 2), and MOPSO (multiobjective particle swarm optimization).http://dx.doi.org/10.1155/2021/5557543 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Banteng Liu Junjie Lu Yourong Chen Ping Sun Kehua Zhao Meng Han Rengong Zhang Zegao Yin |
spellingShingle |
Banteng Liu Junjie Lu Yourong Chen Ping Sun Kehua Zhao Meng Han Rengong Zhang Zegao Yin AI-Driven Multiobjective Scheduling Algorithm of Flood Control Materials Based on Pareto Artificial Bee Colony Wireless Communications and Mobile Computing |
author_facet |
Banteng Liu Junjie Lu Yourong Chen Ping Sun Kehua Zhao Meng Han Rengong Zhang Zegao Yin |
author_sort |
Banteng Liu |
title |
AI-Driven Multiobjective Scheduling Algorithm of Flood Control Materials Based on Pareto Artificial Bee Colony |
title_short |
AI-Driven Multiobjective Scheduling Algorithm of Flood Control Materials Based on Pareto Artificial Bee Colony |
title_full |
AI-Driven Multiobjective Scheduling Algorithm of Flood Control Materials Based on Pareto Artificial Bee Colony |
title_fullStr |
AI-Driven Multiobjective Scheduling Algorithm of Flood Control Materials Based on Pareto Artificial Bee Colony |
title_full_unstemmed |
AI-Driven Multiobjective Scheduling Algorithm of Flood Control Materials Based on Pareto Artificial Bee Colony |
title_sort |
ai-driven multiobjective scheduling algorithm of flood control materials based on pareto artificial bee colony |
publisher |
Hindawi-Wiley |
series |
Wireless Communications and Mobile Computing |
issn |
1530-8677 |
publishDate |
2021-01-01 |
description |
Considering the competition between rescue points, we use artificial intelligence (AI) driven Internet of Thing (IoT) and regional material storage data to propose a multiobjective scheduling algorithm of flood control materials based on Pareto artificial bee colony (MSA_PABC). To address the scheduling of flood control materials, the multiple types of flood control materials, the multiple disaster sites, and entertain both emergency and fairness of rescue need to be considered comprehensively. The MSA_PABC has the constraints such as storage quantity constraint of warehouse materials, material demand constraint, and maximum transportation distance of flood control materials. We establish the scheduling optimization model of flood control materials for each disaster rescue point and the total scheduling optimization model for all flood control materials. Then, MSA_PABC uses the modified Pareto artificial bee colony algorithm to solve the multiobjective models. Three types of initialization strategies are proposed to calculate the fitness of each rescue point and the overall evaluation value of the food source. We propose the employ bee operations such as niche technology and local search of the variable neighborhood, the onlooker bee operations such as Pareto nondominated sorting and crossover operation, the scout bee operations such as maximum evolutionary threshold, and end elimination mechanism. Finally, our proposed solution obtains the nondominated solution set and its optimal solution. The experimental results show that no matter how the number of rescue points changes, MSA_PABC can find the nondominated solution set and optimal solution quickly. It improves the convergence rate of MSA_PABC and material satisfaction rate. Our solution also reduces the average maximum transportation distance, the standard deviation of maximum transportation distance, and the standard deviation of material satisfaction rate. The evaluation also demonstrates MSA_PABC outperforms the state-of-arts such as ABC (artificial bee colony), NSGA2 (nondominated sorting genetic algorithm 2), and MOPSO (multiobjective particle swarm optimization). |
url |
http://dx.doi.org/10.1155/2021/5557543 |
work_keys_str_mv |
AT bantengliu aidrivenmultiobjectiveschedulingalgorithmoffloodcontrolmaterialsbasedonparetoartificialbeecolony AT junjielu aidrivenmultiobjectiveschedulingalgorithmoffloodcontrolmaterialsbasedonparetoartificialbeecolony AT yourongchen aidrivenmultiobjectiveschedulingalgorithmoffloodcontrolmaterialsbasedonparetoartificialbeecolony AT pingsun aidrivenmultiobjectiveschedulingalgorithmoffloodcontrolmaterialsbasedonparetoartificialbeecolony AT kehuazhao aidrivenmultiobjectiveschedulingalgorithmoffloodcontrolmaterialsbasedonparetoartificialbeecolony AT menghan aidrivenmultiobjectiveschedulingalgorithmoffloodcontrolmaterialsbasedonparetoartificialbeecolony AT rengongzhang aidrivenmultiobjectiveschedulingalgorithmoffloodcontrolmaterialsbasedonparetoartificialbeecolony AT zegaoyin aidrivenmultiobjectiveschedulingalgorithmoffloodcontrolmaterialsbasedonparetoartificialbeecolony |
_version_ |
1721295618512519168 |