GEOSPATIAL ASSESSMENT AND MODELING OF URBAN HEAT ISLANDS IN QUEZON CITY, PHILIPPINES USING OLS AND GEOGRAPHICALLY WEIGHTED REGRESSION
Urbanization has played an important part in the development of the society, yet it is accompanied by environmental concerns including the increase of local temperature compared to its immediate surroundings. The latter is known as Urban Heat Islands (UHI). This research aims to model UHI in Quezon...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-10-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W16/85/2019/isprs-archives-XLII-4-W16-85-2019.pdf |
Summary: | Urbanization has played an important part in the development of the society, yet it is accompanied by environmental concerns including the increase of local temperature compared to its immediate surroundings. The latter is known as Urban Heat Islands (UHI). This research aims to model UHI in Quezon City based on Land Surface Temperature (LST) estimated from Landsat 8 data. Geospatial processing and analyses were performed using Google Earth Engine, ArcGIS, GeoDa, and SAGA GIS. Based on Urban Thermal Field Variance Index (UTFVI) and the normalized mean per barangay (village), areas with strong UHI intensities were mapped and characterized. high intensity UHIs are observed mostly in areas with high Normalized Difference Built-up Index (NDBI) like the residential regions while the weak intensity UHIs are noticed in areas with high Normalized Difference Vegetation Index (NDVI) near the La Mesa Reservoir. In the OLS regression model, around 69% of LST variability is explained by Surface Albedo (SA), Sky View Factor (SVF), Surface Area to Volume Ratio (SVR), Solar Radiation (SR), NDBI and NDVI. OLS yield relatively high residuals (RMSE = 1.67) and the residuals are not normally distributed. Since LST is non-stationary, Geographically Weighted Regression (GWR) regression was conducted, proving normally and randomly distributed residuals (average RMSE = 0.26). |
---|---|
ISSN: | 1682-1750 2194-9034 |