A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors

Abstract Background A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precu...

Full description

Bibliographic Details
Main Authors: Dasa Bohaciakova, Marian Hruska-Plochan, Rachel Tsunemoto, Wesley D. Gifford, Shawn P. Driscoll, Thomas D. Glenn, Stephanie Wu, Silvia Marsala, Michael Navarro, Takahiro Tadokoro, Stefan Juhas, Jana Juhasova, Oleksandr Platoshyn, David Piper, Vickie Sheckler, Dara Ditsworth, Samuel L. Pfaff, Martin Marsala
Format: Article
Language:English
Published: BMC 2019-03-01
Series:Stem Cell Research & Therapy
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13287-019-1163-7
id doaj-f87a5d79962b40ba83ca9d1341131d90
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Dasa Bohaciakova
Marian Hruska-Plochan
Rachel Tsunemoto
Wesley D. Gifford
Shawn P. Driscoll
Thomas D. Glenn
Stephanie Wu
Silvia Marsala
Michael Navarro
Takahiro Tadokoro
Stefan Juhas
Jana Juhasova
Oleksandr Platoshyn
David Piper
Vickie Sheckler
Dara Ditsworth
Samuel L. Pfaff
Martin Marsala
spellingShingle Dasa Bohaciakova
Marian Hruska-Plochan
Rachel Tsunemoto
Wesley D. Gifford
Shawn P. Driscoll
Thomas D. Glenn
Stephanie Wu
Silvia Marsala
Michael Navarro
Takahiro Tadokoro
Stefan Juhas
Jana Juhasova
Oleksandr Platoshyn
David Piper
Vickie Sheckler
Dara Ditsworth
Samuel L. Pfaff
Martin Marsala
A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors
Stem Cell Research & Therapy
Human embryonic stem cell (hESC)
Neural stem cell (NSC)
Spinal cord
Amyotrophic lateral sclerosis (ALS)
Spinal traumatic injury
Bioinformatic tools to study xenografts
author_facet Dasa Bohaciakova
Marian Hruska-Plochan
Rachel Tsunemoto
Wesley D. Gifford
Shawn P. Driscoll
Thomas D. Glenn
Stephanie Wu
Silvia Marsala
Michael Navarro
Takahiro Tadokoro
Stefan Juhas
Jana Juhasova
Oleksandr Platoshyn
David Piper
Vickie Sheckler
Dara Ditsworth
Samuel L. Pfaff
Martin Marsala
author_sort Dasa Bohaciakova
title A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors
title_short A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors
title_full A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors
title_fullStr A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors
title_full_unstemmed A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors
title_sort scalable solution for isolating human multipotent clinical-grade neural stem cells from es precursors
publisher BMC
series Stem Cell Research & Therapy
issn 1757-6512
publishDate 2019-03-01
description Abstract Background A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation. Methods Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1G93A), or (iii) spinally injured immunosuppressed minipigs. Results In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2–6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics. Conclusions These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury.
topic Human embryonic stem cell (hESC)
Neural stem cell (NSC)
Spinal cord
Amyotrophic lateral sclerosis (ALS)
Spinal traumatic injury
Bioinformatic tools to study xenografts
url http://link.springer.com/article/10.1186/s13287-019-1163-7
work_keys_str_mv AT dasabohaciakova ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT marianhruskaplochan ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT racheltsunemoto ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT wesleydgifford ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT shawnpdriscoll ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT thomasdglenn ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT stephaniewu ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT silviamarsala ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT michaelnavarro ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT takahirotadokoro ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT stefanjuhas ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT janajuhasova ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT oleksandrplatoshyn ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT davidpiper ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT vickiesheckler ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT daraditsworth ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT samuellpfaff ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT martinmarsala ascalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT dasabohaciakova scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT marianhruskaplochan scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT racheltsunemoto scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT wesleydgifford scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT shawnpdriscoll scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT thomasdglenn scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT stephaniewu scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT silviamarsala scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT michaelnavarro scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT takahirotadokoro scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT stefanjuhas scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT janajuhasova scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT oleksandrplatoshyn scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT davidpiper scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT vickiesheckler scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT daraditsworth scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT samuellpfaff scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
AT martinmarsala scalablesolutionforisolatinghumanmultipotentclinicalgradeneuralstemcellsfromesprecursors
_version_ 1725284231060389888
spelling doaj-f87a5d79962b40ba83ca9d1341131d902020-11-25T00:42:02ZengBMCStem Cell Research & Therapy1757-65122019-03-0110111910.1186/s13287-019-1163-7A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursorsDasa Bohaciakova0Marian Hruska-Plochan1Rachel Tsunemoto2Wesley D. Gifford3Shawn P. Driscoll4Thomas D. Glenn5Stephanie Wu6Silvia Marsala7Michael Navarro8Takahiro Tadokoro9Stefan Juhas10Jana Juhasova11Oleksandr Platoshyn12David Piper13Vickie Sheckler14Dara Ditsworth15Samuel L. Pfaff16Martin Marsala17Department of Anesthesiology, University of California San Diego School of MedicineDepartment of Anesthesiology, University of California San Diego School of MedicineGene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological StudiesGene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological StudiesGene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological StudiesGene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological StudiesDepartment of Anesthesiology, University of California San Diego School of MedicineDepartment of Anesthesiology, University of California San Diego School of MedicineDepartment of Anesthesiology, University of California San Diego School of MedicineDepartment of Anesthesiology, University of California San Diego School of MedicineInstitute of Animal Physiology and Genetics, v.v.i., AS CRInstitute of Animal Physiology and Genetics, v.v.i., AS CRDepartment of Anesthesiology, University of California San Diego School of MedicinePrimary and Stem Cell Systems, Life Technologies (Thermo Fisher Scientific)Sanford Stem Cell Clinical Center, University of California San DiegoDepartment of Cellular and Molecular Medicine, University of California San DiegoGene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological StudiesDepartment of Anesthesiology, University of California San Diego School of MedicineAbstract Background A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation. Methods Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1G93A), or (iii) spinally injured immunosuppressed minipigs. Results In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2–6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics. Conclusions These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury.http://link.springer.com/article/10.1186/s13287-019-1163-7Human embryonic stem cell (hESC)Neural stem cell (NSC)Spinal cordAmyotrophic lateral sclerosis (ALS)Spinal traumatic injuryBioinformatic tools to study xenografts