Growth and Thermal Properties of Mg-Doped Lithium Isotope Niobate (Mg:7LiNbO3) Crystal

An Mg-doped isotope lithium niobate (Mg:7LiNbO3) crystal was successfully grown from 7LiOH, Nb2O5, and MgO using the Crozchralski method. The weight of the as-grown crystal with good quality was about 40 g. The crystal structure was determined as an R3c space group using the X-ray powder diffraction...

Full description

Bibliographic Details
Main Authors: Nana Zhang, Xishi Tai, Xiaoru Pan, Mingjun Song, Jiyang Wang
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Crystals
Subjects:
Online Access:http://www.mdpi.com/2073-4352/8/8/313
Description
Summary:An Mg-doped isotope lithium niobate (Mg:7LiNbO3) crystal was successfully grown from 7LiOH, Nb2O5, and MgO using the Crozchralski method. The weight of the as-grown crystal with good quality was about 40 g. The crystal structure was determined as an R3c space group using the X-ray powder diffraction (XRPD) method, and the crystal composition (Li%) determined using the Raman mode linewidth method was 49.29%. The average transmittance of the crystal in the range of 500–2500 nm was approximately 72%. Various thermal properties, including the specific heat (Cp), the thermal expansion coefficient (α), the thermal diffusion coefficient (λ), and the thermal conductivity (κ), were carefully determined and calculated, and the value divergences among Mg:7LiNbO3, the undoped isotope lithium niobate (7LiNbO3), and natural lithium niobate (LiNbO3) crystals were mainly related to the differences in microstructure caused by the crystal composition.
ISSN:2073-4352