Pore scale modelling of calcite cement dissolution in a reservoir sandstone matrix
Long-term evolution of permeability and tortuosity due to porosity changes evoked by reactivity of aqueous solutions is of paramount importance for predicting water-rock interaction. This challenge is best tackled by introducing reactive transport modelling on the pore-scale, where the modeling doma...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2019-01-01
|
Series: | E3S Web of Conferences |
Online Access: | https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/24/e3sconf_wri-162018_05010.pdf |
Summary: | Long-term evolution of permeability and tortuosity due to porosity changes evoked by reactivity of aqueous solutions is of paramount importance for predicting water-rock interaction. This challenge is best tackled by introducing reactive transport modelling on the pore-scale, where the modeling domain is a high-resolution tomographic image of the porous media. We suggest to use a voxel based Navier-Stokes-Brinkman solver in a finite volume formulation coupled to the thermodynamic equilibrium code PhreeqC. High-performance parallelized computations using this coupled numerical reactive transport solver are performed directly on the voxel grid of the segmented micro-CT scans. Retreat of the calcite cement in a sandstone matrix due to dissolution reactions can be directly visualized by digital rock physics experiments. |
---|---|
ISSN: | 2267-1242 |