Magnetic-driven dynamic culture promotes osteogenesis of mesenchymal stem cell

Abstract Effective nutrient transport and appropriate mechanical stimulation play important roles in production of tissue-engineered bone grafts. In this study, an experimental set-up for magnetic-driven dynamic culture of cells was designed to mimic the microenvironment of the bone tissue. Here, it...

Full description

Bibliographic Details
Main Authors: Mengyang Hao, Minghao Xiong, Yangyang Liu, Wen-song Tan, Haibo Cai
Format: Article
Language:English
Published: SpringerOpen 2021-02-01
Series:Bioresources and Bioprocessing
Subjects:
Online Access:https://doi.org/10.1186/s40643-021-00368-4
Description
Summary:Abstract Effective nutrient transport and appropriate mechanical stimulation play important roles in production of tissue-engineered bone grafts. In this study, an experimental set-up for magnetic-driven dynamic culture of cells was designed to mimic the microenvironment of the bone tissue. Here, its ability to contribute to osteogenic differentiation was investigated by inoculating human umbilical cord mesenchymal stem cells (HUMSCs) on magnetic scaffolds. The cytocompatibility of the developed magnetic scaffolds was verified for HUMSCs. Magnetic scaffolds seeded with HUMSCs were exposed to magnetic fields. The results showed that magnetic fields did not affect cell activity and promoted HUMSCs osteogenic differentiation. The magnetic scaffolds were magnetically driven for dynamic culture in the experimental set-up to evaluate the influence of HUMSCs osteoblast differentiation. The results indicated that magnetic-driven dynamic culture increased cell alkaline phosphatase (ALP) activity (p < 0.05) and calcium release (p < 0.05) compared with static culture. The effect was demonstrated in the expression of bone-associated genes. Overall, this study showed that magnetic-driven dynamic culture is a promising tool for regenerative bone engineering.
ISSN:2197-4365