Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and −10 °C, on...

Full description

Bibliographic Details
Main Authors: C. R. Hoyle, C. Fuchs, E. Järvinen, H. Saathoff, A. Dias, I. El Haddad, M. Gysel, S. C. Coburn, J. Tröstl, A.-K. Bernhammer, F. Bianchi, M. Breitenlechner, J. C. Corbin, J. Craven, N. M. Donahue, J. Duplissy, S. Ehrhart, C. Frege, H. Gordon, N. Höppel, M. Heinritzi, T. B. Kristensen, U. Molteni, L. Nichman, T. Pinterich, A. S. H. Prévôt, M. Simon, J. G. Slowik, G. Steiner, A. Tomé, A. L. Vogel, R. Volkamer, A. C. Wagner, R. Wagner, A. S. Wexler, C. Williamson, P. M. Winkler, C. Yan, A. Amorim, J. Dommen, J. Curtius, M. W. Gallagher, R. C. Flagan, A. Hansel, J. Kirkby, M. Kulmala, O. Möhler, F. Stratmann, D. R. Worsnop, U. Baltensperger
Format: Article
Language:English
Published: Copernicus Publications 2016-02-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/16/1693/2016/acp-16-1693-2016.pdf
id doaj-f9b0088d10514fda9f3f903e792b0f78
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author C. R. Hoyle
C. R. Hoyle
C. Fuchs
E. Järvinen
H. Saathoff
A. Dias
I. El Haddad
M. Gysel
S. C. Coburn
J. Tröstl
A.-K. Bernhammer
A.-K. Bernhammer
F. Bianchi
M. Breitenlechner
J. C. Corbin
J. Craven
J. Craven
N. M. Donahue
J. Duplissy
S. Ehrhart
C. Frege
H. Gordon
N. Höppel
M. Heinritzi
T. B. Kristensen
U. Molteni
L. Nichman
T. Pinterich
A. S. H. Prévôt
M. Simon
J. G. Slowik
G. Steiner
G. Steiner
G. Steiner
A. Tomé
A. L. Vogel
R. Volkamer
A. C. Wagner
R. Wagner
A. S. Wexler
C. Williamson
C. Williamson
C. Williamson
P. M. Winkler
C. Yan
A. Amorim
J. Dommen
J. Curtius
M. W. Gallagher
M. W. Gallagher
R. C. Flagan
A. Hansel
A. Hansel
J. Kirkby
J. Kirkby
M. Kulmala
O. Möhler
F. Stratmann
D. R. Worsnop
D. R. Worsnop
U. Baltensperger
spellingShingle C. R. Hoyle
C. R. Hoyle
C. Fuchs
E. Järvinen
H. Saathoff
A. Dias
I. El Haddad
M. Gysel
S. C. Coburn
J. Tröstl
A.-K. Bernhammer
A.-K. Bernhammer
F. Bianchi
M. Breitenlechner
J. C. Corbin
J. Craven
J. Craven
N. M. Donahue
J. Duplissy
S. Ehrhart
C. Frege
H. Gordon
N. Höppel
M. Heinritzi
T. B. Kristensen
U. Molteni
L. Nichman
T. Pinterich
A. S. H. Prévôt
M. Simon
J. G. Slowik
G. Steiner
G. Steiner
G. Steiner
A. Tomé
A. L. Vogel
R. Volkamer
A. C. Wagner
R. Wagner
A. S. Wexler
C. Williamson
C. Williamson
C. Williamson
P. M. Winkler
C. Yan
A. Amorim
J. Dommen
J. Curtius
M. W. Gallagher
M. W. Gallagher
R. C. Flagan
A. Hansel
A. Hansel
J. Kirkby
J. Kirkby
M. Kulmala
O. Möhler
F. Stratmann
D. R. Worsnop
D. R. Worsnop
U. Baltensperger
Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets
Atmospheric Chemistry and Physics
author_facet C. R. Hoyle
C. R. Hoyle
C. Fuchs
E. Järvinen
H. Saathoff
A. Dias
I. El Haddad
M. Gysel
S. C. Coburn
J. Tröstl
A.-K. Bernhammer
A.-K. Bernhammer
F. Bianchi
M. Breitenlechner
J. C. Corbin
J. Craven
J. Craven
N. M. Donahue
J. Duplissy
S. Ehrhart
C. Frege
H. Gordon
N. Höppel
M. Heinritzi
T. B. Kristensen
U. Molteni
L. Nichman
T. Pinterich
A. S. H. Prévôt
M. Simon
J. G. Slowik
G. Steiner
G. Steiner
G. Steiner
A. Tomé
A. L. Vogel
R. Volkamer
A. C. Wagner
R. Wagner
A. S. Wexler
C. Williamson
C. Williamson
C. Williamson
P. M. Winkler
C. Yan
A. Amorim
J. Dommen
J. Curtius
M. W. Gallagher
M. W. Gallagher
R. C. Flagan
A. Hansel
A. Hansel
J. Kirkby
J. Kirkby
M. Kulmala
O. Möhler
F. Stratmann
D. R. Worsnop
D. R. Worsnop
U. Baltensperger
author_sort C. R. Hoyle
title Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets
title_short Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets
title_full Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets
title_fullStr Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets
title_full_unstemmed Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets
title_sort aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2016-02-01
description The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and −10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion – pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and −10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO<sub>2</sub> in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct.
url https://www.atmos-chem-phys.net/16/1693/2016/acp-16-1693-2016.pdf
work_keys_str_mv AT crhoyle aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT crhoyle aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT cfuchs aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT ejarvinen aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT hsaathoff aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT adias aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT ielhaddad aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT mgysel aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT sccoburn aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT jtrostl aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT akbernhammer aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT akbernhammer aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT fbianchi aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT mbreitenlechner aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT jccorbin aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT jcraven aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT jcraven aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT nmdonahue aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT jduplissy aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT sehrhart aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT cfrege aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT hgordon aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT nhoppel aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT mheinritzi aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT tbkristensen aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT umolteni aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT lnichman aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT tpinterich aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT ashprevot aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT msimon aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT jgslowik aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT gsteiner aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT gsteiner aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT gsteiner aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT atome aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT alvogel aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT rvolkamer aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT acwagner aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT rwagner aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT aswexler aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT cwilliamson aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT cwilliamson aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT cwilliamson aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT pmwinkler aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT cyan aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT aamorim aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT jdommen aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT jcurtius aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT mwgallagher aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT mwgallagher aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT rcflagan aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT ahansel aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT ahansel aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT jkirkby aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT jkirkby aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT mkulmala aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT omohler aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT fstratmann aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT drworsnop aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT drworsnop aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
AT ubaltensperger aqueousphaseoxidationofsulphurdioxidebyozoneinclouddroplets
_version_ 1724831074246197248
spelling doaj-f9b0088d10514fda9f3f903e792b0f782020-11-25T02:29:54ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242016-02-01161693171210.5194/acp-16-1693-2016Aqueous phase oxidation of sulphur dioxide by ozone in cloud dropletsC. R. Hoyle0C. R. Hoyle1C. Fuchs2E. Järvinen3H. Saathoff4A. Dias5I. El Haddad6M. Gysel7S. C. Coburn8J. Tröstl9A.-K. Bernhammer10A.-K. Bernhammer11F. Bianchi12M. Breitenlechner13J. C. Corbin14J. Craven15J. Craven16N. M. Donahue17J. Duplissy18S. Ehrhart19C. Frege20H. Gordon21N. Höppel22M. Heinritzi23T. B. Kristensen24U. Molteni25L. Nichman26T. Pinterich27A. S. H. Prévôt28M. Simon29J. G. Slowik30G. Steiner31G. Steiner32G. Steiner33A. Tomé34A. L. Vogel35R. Volkamer36A. C. Wagner37R. Wagner38A. S. Wexler39C. Williamson40C. Williamson41C. Williamson42P. M. Winkler43C. Yan44A. Amorim45J. Dommen46J. Curtius47M. W. Gallagher48M. W. Gallagher49R. C. Flagan50A. Hansel51A. Hansel52J. Kirkby53J. Kirkby54M. Kulmala55O. Möhler56F. Stratmann57D. R. Worsnop58D. R. Worsnop59U. Baltensperger60Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandWSL Institute for Snow and Avalanche Research SLF Davos, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandKarlsruhe Institute of Technology, Institute for Meteorology and Climate Research, P.O. Box 3640, 76021 Karlsruhe, GermanyKarlsruhe Institute of Technology, Institute for Meteorology and Climate Research, P.O. Box 3640, 76021 Karlsruhe, GermanyCERN, 1211 Geneva, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandDepartment of Chemistry and Biochemistry & CIRES, University of Colorado, Boulder, CO, USALaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandUniversity of Innsbruck, Institute for Ion Physics and Applied Physics, Technikerstrasse 25, 6020 Innsbruck, AustriaIonicon Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck, AustriaLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandUniversity of Innsbruck, Institute for Ion Physics and Applied Physics, Technikerstrasse 25, 6020 Innsbruck, AustriaLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandCalifornia Institute of Technology, Department of Chemical Engineering, Pasadena, CA 91125, USAnow at: Portland Technology Development Division of Intel, Hillsboro, OR, USACarnegie Mellon University Center for Atmospheric Particle Studies, 5000 Forbes Ave, Pittsburgh, PA 15213, USADivision of Atmospheric Sciences, Department of Physics, P.O. Box 64, 00014, University of Helsinki, Helsinki, FinlandCERN, 1211 Geneva, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandCERN, 1211 Geneva, SwitzerlandKarlsruhe Institute of Technology, Institute for Meteorology and Climate Research, P.O. Box 3640, 76021 Karlsruhe, GermanyGoethe University of Frankfurt, Institute for Atmospheric and Environmental Sciences, 60438 Frankfurt am Main, GermanyLeibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, GermanyLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandSchool of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UKUniversity of Vienna, Faculty of Physics, Aerosol and Environmental Physics, Boltzmanngasse 5, 1090 Vienna, AustriaLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandGoethe University of Frankfurt, Institute for Atmospheric and Environmental Sciences, 60438 Frankfurt am Main, GermanyLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandUniversity of Innsbruck, Institute for Ion Physics and Applied Physics, Technikerstrasse 25, 6020 Innsbruck, AustriaDivision of Atmospheric Sciences, Department of Physics, P.O. Box 64, 00014, University of Helsinki, Helsinki, FinlandUniversity of Vienna, Faculty of Physics, Aerosol and Environmental Physics, Boltzmanngasse 5, 1090 Vienna, AustriaCENTRA-SIM, University of Lisbon and University of Beira Interior, 1749-016 Lisbon, PortugalCERN, 1211 Geneva, SwitzerlandDepartment of Chemistry and Biochemistry & CIRES, University of Colorado, Boulder, CO, USAGoethe University of Frankfurt, Institute for Atmospheric and Environmental Sciences, 60438 Frankfurt am Main, GermanyDivision of Atmospheric Sciences, Department of Physics, P.O. Box 64, 00014, University of Helsinki, Helsinki, FinlandDepartments of Mechanical and Aeronautical Engineering, Civil and Environmental Engineering, and Land, Air, and Water Resources, University of California, Davis, CA, USAGoethe University of Frankfurt, Institute for Atmospheric and Environmental Sciences, 60438 Frankfurt am Main, Germanynow at: Chemical Sciences Division NOAA Earth System Research Laboratory 325 Broadway R/CSD2 Boulder, CO, USAnow at: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USAUniversity of Vienna, Faculty of Physics, Aerosol and Environmental Physics, Boltzmanngasse 5, 1090 Vienna, AustriaDivision of Atmospheric Sciences, Department of Physics, P.O. Box 64, 00014, University of Helsinki, Helsinki, FinlandCENTRA-SIM, University of Lisbon and University of Beira Interior, 1749-016 Lisbon, PortugalLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandGoethe University of Frankfurt, Institute for Atmospheric and Environmental Sciences, 60438 Frankfurt am Main, GermanySchool of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UKNERC Instrument PI, National Centre for Atmospheric Science (NCAS), Leeds, UKCalifornia Institute of Technology, Department of Chemical Engineering, Pasadena, CA 91125, USAUniversity of Innsbruck, Institute for Ion Physics and Applied Physics, Technikerstrasse 25, 6020 Innsbruck, AustriaIonicon Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck, AustriaCERN, 1211 Geneva, SwitzerlandGoethe University of Frankfurt, Institute for Atmospheric and Environmental Sciences, 60438 Frankfurt am Main, GermanyDivision of Atmospheric Sciences, Department of Physics, P.O. Box 64, 00014, University of Helsinki, Helsinki, FinlandKarlsruhe Institute of Technology, Institute for Meteorology and Climate Research, P.O. Box 3640, 76021 Karlsruhe, GermanyLeibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, GermanyDivision of Atmospheric Sciences, Department of Physics, P.O. Box 64, 00014, University of Helsinki, Helsinki, FinlandAerodyne Research Inc., Billerica, MA 01821, USALaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandThe growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and −10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion – pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and −10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO<sub>2</sub> in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct.https://www.atmos-chem-phys.net/16/1693/2016/acp-16-1693-2016.pdf