Método preliminar de detección de patógenos biológicos en cultivos de fresa por medio del procesamiento digital de imágenes

En la actualidad, muchos estudios enfocados en el reconocimiento de patógenos biológicos, a través de los frutos de cultivos de fresa son efectivas, sin embargo la adquisición de la imagen se realiza mediante métodos destructivos que implican arrancar los frutos de la planta. En la presente investi...

Full description

Bibliographic Details
Main Authors: Darío Amaya Hurtado, Juan David Sandino Mora
Format: Article
Language:Spanish
Published: UNAD 2015-01-01
Series:Revista de Investigación Agraria y Ambiental
Subjects:
Online Access:https://hemeroteca.unad.edu.co/index.php/riaa/article/view/1267
Description
Summary:En la actualidad, muchos estudios enfocados en el reconocimiento de patógenos biológicos, a través de los frutos de cultivos de fresa son efectivas, sin embargo la adquisición de la imagen se realiza mediante métodos destructivos que implican arrancar los frutos de la planta. En la presente investigación se ha propuesto el desarrollo de un algoritmo que permita analizar los frutos de un cultivo de fresa (Fragaria x ananassa), capaz de realizar una primera aproximación para distinguir Botrytis sp. y Sphaerotheca sp., usando un método no destructivo, es decir, recolectando las imágenes directamente del cultivo sin realizar intervención alguna por parte de los productores y/o investigadores. Las técnicas de procesamiento de imágenes implementadas incluyen suavizado, erosión, dilatación, detección de contornos, correspondencia de patrones, umbralización, entre otros. Los resultados obtenidos se visualizaron en una aplicación desarrollada en C# usando la librería Emgu CV, mostrando al usuario un diagnóstico de la planta de estudio. Se concluye que es posible ofrecer un servicio de monitoreo preliminar de incidencia de patógenos usando este algoritmo, ahorrando tiempo para productores e investigadores que requieran una primera aproximación del estado del cultivo, con la posibilidad de ejecutarse tanto en computadores de escritorio y portátiles como en robots aéreos (drones) que posibilitan automatizar esta tarea.
ISSN:2145-6097
2145-6453