Urine-derived cells for human cell therapy

Abstract Desirable cells for human cell therapy would be ones that can be generated by simple isolation and culture techniques using a donor sample obtained by non-invasive methods. To date, the different donor-specific cells that can be isolated from blood, skin, and hair require invasive methods f...

Full description

Bibliographic Details
Main Authors: Nimshitha Pavathuparambil Abdul Manaph, Mohammed Al-Hawwas, Larisa Bobrovskaya, Patrick T. Coates, Xin-Fu Zhou
Format: Article
Language:English
Published: BMC 2018-07-01
Series:Stem Cell Research & Therapy
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13287-018-0932-z
Description
Summary:Abstract Desirable cells for human cell therapy would be ones that can be generated by simple isolation and culture techniques using a donor sample obtained by non-invasive methods. To date, the different donor-specific cells that can be isolated from blood, skin, and hair require invasive methods for sample isolation and incorporate complex and costly reagents to culture. These cells also take considerable time for their in-vitro isolation and expansion. Previous studies suggest that donor-derived cells, namely urine stem cells and renal cells, may be isolated from human urine samples using a cost-effective and simple method of isolation, incorporating not such complex reagents. Moreover, the isolated cells, particularly urine stem cells, are superior to conventional stem cell sources in terms of favourable gene profile and inherent multipotent potential. Transdifferentiation or differentiation of human urine-derived cells can generate desirable cells for regenerative therapy. In this review, we intended to discuss the characteristics and therapeutic applications of urine-derived cells for human cell therapy. Conclusively, with detailed study and optimisation, urine-derived cells have a prospective future to generate functional lineage-specific cells for patients from a clinical translation point of view.
ISSN:1757-6512