Magnetic barriers of compact support and eigenvalues in spectral gaps

We consider Schr"odinger operators $H = -Delta + V$ in $L_2(mathbb{R}^2)$ with a spectral gap, perturbed by a strong magnetic field $mathcal{B}$ of compact support. We assume here that the support of $mathcal{B}$ is connected and has a connected complement; the total magnetic flux may be zero o...

Full description

Bibliographic Details
Main Authors: Rainer Hempel, Alexander Besch
Format: Article
Language:English
Published: Texas State University 2003-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2003/48/abstr.html