Au Nanoparticles-Doped Polymer All-Optical Switches Based on Photothermal Effects

This article demonstrated the Au nanoparticles-doped polymer all-optical switches based on photothermal effects. The Au nanoparticles have a strong photothermal effect, which would generate the inhomogeneous thermal field distributions in the waveguide under the laser irradiation. Meanwhile, the pol...

Full description

Bibliographic Details
Main Authors: Yue Cao, Daming Zhang, Yue Yang, Baizhu Lin, Jiawen Lv, Fei Wang, Xianwang Yang, Yunji Yi
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/12/9/1960
Description
Summary:This article demonstrated the Au nanoparticles-doped polymer all-optical switches based on photothermal effects. The Au nanoparticles have a strong photothermal effect, which would generate the inhomogeneous thermal field distributions in the waveguide under the laser irradiation. Meanwhile, the polymer materials have the characteristics of good compatibility with photothermal materials, low cost, high thermo-optical coefficient and flexibility. Therefore, the Au nanoparticles-doped polymer material can be applied in optically controlled optical switches with low power consumption, small device dimension and high integration. Moreover, the end-pumping method has a higher optical excitation efficiency, which can further reduce the power consumption of the device. Two kinds of all-optical switching devices have been designed including a base mode switch and a first-order mode switch. For the base mode switch, the power consumption and the rise/fall time were 2.05 mW and 17.3/106.9 μs, respectively at the wavelength of 650 nm. For the first-order mode switch, the power consumption and the rise/fall time were 0.5 mW and 10.2/74.9 μs, respectively at the wavelength of 532 nm. This all-optical switching device has the potential applications in all-optical networks, flexibility device and wearable technology fields.
ISSN:2073-4360