Comparative H-mode density limit studies in JET and AUG

Identification of the mechanisms for the H-mode density limit in machines with fully metallic walls, and their scaling to future devices is essential to find for these machines the optimal operational boundaries with the highest attainable density and confinement. Systematic investigations of H-mode...

Full description

Bibliographic Details
Main Authors: A. Huber, M. Bernert, S. Brezinsek, A.V. Chankin, G. Sergienko, V. Huber, S. Wiesen, P. Abreu, M.N.A. Beurskens, A. Boboc, M. Brix, G. Calabrò, D. Carralero, E. Delabie, T. Eich, H.G. Esser, M. Groth, C. Guillemaut, S. Jachmich, A. Järvinen, E. Joffrin, A. Kallenbach, U. Kruezi, P. Lang, Ch. Linsmeier, C.G. Lowry, C.F. Maggi, G.F. Matthews, A.G. Meigs, Ph. Mertens, F. Reimold, J. Schweinzer, G. Sips, M. Stamp, E. Viezzer, M. Wischmeier, H. Zohm
Format: Article
Language:English
Published: Elsevier 2017-08-01
Series:Nuclear Materials and Energy
Online Access:http://www.sciencedirect.com/science/article/pii/S2352179116300588
id doaj-fbecdc43105e46f49241a5fae4a54bd1
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author A. Huber
M. Bernert
S. Brezinsek
A.V. Chankin
G. Sergienko
V. Huber
S. Wiesen
P. Abreu
M.N.A. Beurskens
A. Boboc
M. Brix
G. Calabrò
D. Carralero
E. Delabie
T. Eich
H.G. Esser
M. Groth
C. Guillemaut
S. Jachmich
A. Järvinen
E. Joffrin
A. Kallenbach
U. Kruezi
P. Lang
Ch. Linsmeier
C.G. Lowry
C.F. Maggi
G.F. Matthews
A.G. Meigs
Ph. Mertens
F. Reimold
J. Schweinzer
G. Sips
M. Stamp
E. Viezzer
M. Wischmeier
H. Zohm
spellingShingle A. Huber
M. Bernert
S. Brezinsek
A.V. Chankin
G. Sergienko
V. Huber
S. Wiesen
P. Abreu
M.N.A. Beurskens
A. Boboc
M. Brix
G. Calabrò
D. Carralero
E. Delabie
T. Eich
H.G. Esser
M. Groth
C. Guillemaut
S. Jachmich
A. Järvinen
E. Joffrin
A. Kallenbach
U. Kruezi
P. Lang
Ch. Linsmeier
C.G. Lowry
C.F. Maggi
G.F. Matthews
A.G. Meigs
Ph. Mertens
F. Reimold
J. Schweinzer
G. Sips
M. Stamp
E. Viezzer
M. Wischmeier
H. Zohm
Comparative H-mode density limit studies in JET and AUG
Nuclear Materials and Energy
author_facet A. Huber
M. Bernert
S. Brezinsek
A.V. Chankin
G. Sergienko
V. Huber
S. Wiesen
P. Abreu
M.N.A. Beurskens
A. Boboc
M. Brix
G. Calabrò
D. Carralero
E. Delabie
T. Eich
H.G. Esser
M. Groth
C. Guillemaut
S. Jachmich
A. Järvinen
E. Joffrin
A. Kallenbach
U. Kruezi
P. Lang
Ch. Linsmeier
C.G. Lowry
C.F. Maggi
G.F. Matthews
A.G. Meigs
Ph. Mertens
F. Reimold
J. Schweinzer
G. Sips
M. Stamp
E. Viezzer
M. Wischmeier
H. Zohm
author_sort A. Huber
title Comparative H-mode density limit studies in JET and AUG
title_short Comparative H-mode density limit studies in JET and AUG
title_full Comparative H-mode density limit studies in JET and AUG
title_fullStr Comparative H-mode density limit studies in JET and AUG
title_full_unstemmed Comparative H-mode density limit studies in JET and AUG
title_sort comparative h-mode density limit studies in jet and aug
publisher Elsevier
series Nuclear Materials and Energy
issn 2352-1791
publishDate 2017-08-01
description Identification of the mechanisms for the H-mode density limit in machines with fully metallic walls, and their scaling to future devices is essential to find for these machines the optimal operational boundaries with the highest attainable density and confinement. Systematic investigations of H-mode density limit plasmas in experiments with deuterium external gas fuelling have been performed on machines with fully metallic walls, JET and AUG and results have been compared with one another.Basically, the operation phases are identical for both tokamaks: the stable H-mode phase, degrading H-mode phase, breakdown of the H-mode with energy confinement deterioration usually accompanied by a dithering cycling phase, followed by the l-mode phase. The observed H-mode density limit on both machines is found close to the Greenwald limit (n/nGW=0.8–1.1 in the observed magnetic configurations). The similar behavior of the radiation on both tokamaks demonstrates that the density limit (DL) is neither related to additional energy losses from the confined region by radiation, nor to an inward collapse of the hot discharge core induced by overcooling of the plasma periphery by radiation.It was observed on both machines that detachment, as well as the X-point MARFE itself, does not trigger a transition in the confinement regime and thus does not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the transition from H- to l-mode.The measured Greenwald fractions are found to be consistent with the predictions from different theoretical models [16,30] based on MHD instability theory in the near-SOL. Keywords: Density limit, H-mode, Detachment, Greenwald fraction, JET, ASDEX Upgrade
url http://www.sciencedirect.com/science/article/pii/S2352179116300588
work_keys_str_mv AT ahuber comparativehmodedensitylimitstudiesinjetandaug
AT mbernert comparativehmodedensitylimitstudiesinjetandaug
AT sbrezinsek comparativehmodedensitylimitstudiesinjetandaug
AT avchankin comparativehmodedensitylimitstudiesinjetandaug
AT gsergienko comparativehmodedensitylimitstudiesinjetandaug
AT vhuber comparativehmodedensitylimitstudiesinjetandaug
AT swiesen comparativehmodedensitylimitstudiesinjetandaug
AT pabreu comparativehmodedensitylimitstudiesinjetandaug
AT mnabeurskens comparativehmodedensitylimitstudiesinjetandaug
AT aboboc comparativehmodedensitylimitstudiesinjetandaug
AT mbrix comparativehmodedensitylimitstudiesinjetandaug
AT gcalabro comparativehmodedensitylimitstudiesinjetandaug
AT dcarralero comparativehmodedensitylimitstudiesinjetandaug
AT edelabie comparativehmodedensitylimitstudiesinjetandaug
AT teich comparativehmodedensitylimitstudiesinjetandaug
AT hgesser comparativehmodedensitylimitstudiesinjetandaug
AT mgroth comparativehmodedensitylimitstudiesinjetandaug
AT cguillemaut comparativehmodedensitylimitstudiesinjetandaug
AT sjachmich comparativehmodedensitylimitstudiesinjetandaug
AT ajarvinen comparativehmodedensitylimitstudiesinjetandaug
AT ejoffrin comparativehmodedensitylimitstudiesinjetandaug
AT akallenbach comparativehmodedensitylimitstudiesinjetandaug
AT ukruezi comparativehmodedensitylimitstudiesinjetandaug
AT plang comparativehmodedensitylimitstudiesinjetandaug
AT chlinsmeier comparativehmodedensitylimitstudiesinjetandaug
AT cglowry comparativehmodedensitylimitstudiesinjetandaug
AT cfmaggi comparativehmodedensitylimitstudiesinjetandaug
AT gfmatthews comparativehmodedensitylimitstudiesinjetandaug
AT agmeigs comparativehmodedensitylimitstudiesinjetandaug
AT phmertens comparativehmodedensitylimitstudiesinjetandaug
AT freimold comparativehmodedensitylimitstudiesinjetandaug
AT jschweinzer comparativehmodedensitylimitstudiesinjetandaug
AT gsips comparativehmodedensitylimitstudiesinjetandaug
AT mstamp comparativehmodedensitylimitstudiesinjetandaug
AT eviezzer comparativehmodedensitylimitstudiesinjetandaug
AT mwischmeier comparativehmodedensitylimitstudiesinjetandaug
AT hzohm comparativehmodedensitylimitstudiesinjetandaug
_version_ 1725964030609195008
spelling doaj-fbecdc43105e46f49241a5fae4a54bd12020-11-24T21:30:05ZengElsevierNuclear Materials and Energy2352-17912017-08-0112100110Comparative H-mode density limit studies in JET and AUGA. Huber0M. Bernert1S. Brezinsek2A.V. Chankin3G. Sergienko4V. Huber5S. Wiesen6P. Abreu7M.N.A. Beurskens8A. Boboc9M. Brix10G. Calabrò11D. Carralero12E. Delabie13T. Eich14H.G. Esser15M. Groth16C. Guillemaut17S. Jachmich18A. Järvinen19E. Joffrin20A. Kallenbach21U. Kruezi22P. Lang23Ch. Linsmeier24C.G. Lowry25C.F. Maggi26G.F. Matthews27A.G. Meigs28Ph. Mertens29F. Reimold30J. Schweinzer31G. Sips32M. Stamp33E. Viezzer34M. Wischmeier35H. Zohm36Corresponding author.; EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB, UK; Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Supercomputing Centre, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyInstituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Lisboa, PortugalCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKENEA for EUROfusion, via E. Fermi 45, 00044 Frascati Rome, ItalyMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyOak Ridge National Laboratory, Oak Ridge, TN, USAMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyAalto University, Otakaari 4, 02015 Espoo, FinlandInstituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Lisboa, PortugalLaboratory for Plasma Physics, ERM/KMS, B-1000 Brussels, BelgiumAalto University, Otakaari 4, 02015 Espoo, FinlandCEA, IRFM, F-13108St Paul lez Durance, FranceMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyIdentification of the mechanisms for the H-mode density limit in machines with fully metallic walls, and their scaling to future devices is essential to find for these machines the optimal operational boundaries with the highest attainable density and confinement. Systematic investigations of H-mode density limit plasmas in experiments with deuterium external gas fuelling have been performed on machines with fully metallic walls, JET and AUG and results have been compared with one another.Basically, the operation phases are identical for both tokamaks: the stable H-mode phase, degrading H-mode phase, breakdown of the H-mode with energy confinement deterioration usually accompanied by a dithering cycling phase, followed by the l-mode phase. The observed H-mode density limit on both machines is found close to the Greenwald limit (n/nGW=0.8–1.1 in the observed magnetic configurations). The similar behavior of the radiation on both tokamaks demonstrates that the density limit (DL) is neither related to additional energy losses from the confined region by radiation, nor to an inward collapse of the hot discharge core induced by overcooling of the plasma periphery by radiation.It was observed on both machines that detachment, as well as the X-point MARFE itself, does not trigger a transition in the confinement regime and thus does not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the transition from H- to l-mode.The measured Greenwald fractions are found to be consistent with the predictions from different theoretical models [16,30] based on MHD instability theory in the near-SOL. Keywords: Density limit, H-mode, Detachment, Greenwald fraction, JET, ASDEX Upgradehttp://www.sciencedirect.com/science/article/pii/S2352179116300588