Comparative H-mode density limit studies in JET and AUG
Identification of the mechanisms for the H-mode density limit in machines with fully metallic walls, and their scaling to future devices is essential to find for these machines the optimal operational boundaries with the highest attainable density and confinement. Systematic investigations of H-mode...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2017-08-01
|
Series: | Nuclear Materials and Energy |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352179116300588 |
id |
doaj-fbecdc43105e46f49241a5fae4a54bd1 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Huber M. Bernert S. Brezinsek A.V. Chankin G. Sergienko V. Huber S. Wiesen P. Abreu M.N.A. Beurskens A. Boboc M. Brix G. Calabrò D. Carralero E. Delabie T. Eich H.G. Esser M. Groth C. Guillemaut S. Jachmich A. Järvinen E. Joffrin A. Kallenbach U. Kruezi P. Lang Ch. Linsmeier C.G. Lowry C.F. Maggi G.F. Matthews A.G. Meigs Ph. Mertens F. Reimold J. Schweinzer G. Sips M. Stamp E. Viezzer M. Wischmeier H. Zohm |
spellingShingle |
A. Huber M. Bernert S. Brezinsek A.V. Chankin G. Sergienko V. Huber S. Wiesen P. Abreu M.N.A. Beurskens A. Boboc M. Brix G. Calabrò D. Carralero E. Delabie T. Eich H.G. Esser M. Groth C. Guillemaut S. Jachmich A. Järvinen E. Joffrin A. Kallenbach U. Kruezi P. Lang Ch. Linsmeier C.G. Lowry C.F. Maggi G.F. Matthews A.G. Meigs Ph. Mertens F. Reimold J. Schweinzer G. Sips M. Stamp E. Viezzer M. Wischmeier H. Zohm Comparative H-mode density limit studies in JET and AUG Nuclear Materials and Energy |
author_facet |
A. Huber M. Bernert S. Brezinsek A.V. Chankin G. Sergienko V. Huber S. Wiesen P. Abreu M.N.A. Beurskens A. Boboc M. Brix G. Calabrò D. Carralero E. Delabie T. Eich H.G. Esser M. Groth C. Guillemaut S. Jachmich A. Järvinen E. Joffrin A. Kallenbach U. Kruezi P. Lang Ch. Linsmeier C.G. Lowry C.F. Maggi G.F. Matthews A.G. Meigs Ph. Mertens F. Reimold J. Schweinzer G. Sips M. Stamp E. Viezzer M. Wischmeier H. Zohm |
author_sort |
A. Huber |
title |
Comparative H-mode density limit studies in JET and AUG |
title_short |
Comparative H-mode density limit studies in JET and AUG |
title_full |
Comparative H-mode density limit studies in JET and AUG |
title_fullStr |
Comparative H-mode density limit studies in JET and AUG |
title_full_unstemmed |
Comparative H-mode density limit studies in JET and AUG |
title_sort |
comparative h-mode density limit studies in jet and aug |
publisher |
Elsevier |
series |
Nuclear Materials and Energy |
issn |
2352-1791 |
publishDate |
2017-08-01 |
description |
Identification of the mechanisms for the H-mode density limit in machines with fully metallic walls, and their scaling to future devices is essential to find for these machines the optimal operational boundaries with the highest attainable density and confinement. Systematic investigations of H-mode density limit plasmas in experiments with deuterium external gas fuelling have been performed on machines with fully metallic walls, JET and AUG and results have been compared with one another.Basically, the operation phases are identical for both tokamaks: the stable H-mode phase, degrading H-mode phase, breakdown of the H-mode with energy confinement deterioration usually accompanied by a dithering cycling phase, followed by the l-mode phase. The observed H-mode density limit on both machines is found close to the Greenwald limit (n/nGW=0.8–1.1 in the observed magnetic configurations). The similar behavior of the radiation on both tokamaks demonstrates that the density limit (DL) is neither related to additional energy losses from the confined region by radiation, nor to an inward collapse of the hot discharge core induced by overcooling of the plasma periphery by radiation.It was observed on both machines that detachment, as well as the X-point MARFE itself, does not trigger a transition in the confinement regime and thus does not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the transition from H- to l-mode.The measured Greenwald fractions are found to be consistent with the predictions from different theoretical models [16,30] based on MHD instability theory in the near-SOL. Keywords: Density limit, H-mode, Detachment, Greenwald fraction, JET, ASDEX Upgrade |
url |
http://www.sciencedirect.com/science/article/pii/S2352179116300588 |
work_keys_str_mv |
AT ahuber comparativehmodedensitylimitstudiesinjetandaug AT mbernert comparativehmodedensitylimitstudiesinjetandaug AT sbrezinsek comparativehmodedensitylimitstudiesinjetandaug AT avchankin comparativehmodedensitylimitstudiesinjetandaug AT gsergienko comparativehmodedensitylimitstudiesinjetandaug AT vhuber comparativehmodedensitylimitstudiesinjetandaug AT swiesen comparativehmodedensitylimitstudiesinjetandaug AT pabreu comparativehmodedensitylimitstudiesinjetandaug AT mnabeurskens comparativehmodedensitylimitstudiesinjetandaug AT aboboc comparativehmodedensitylimitstudiesinjetandaug AT mbrix comparativehmodedensitylimitstudiesinjetandaug AT gcalabro comparativehmodedensitylimitstudiesinjetandaug AT dcarralero comparativehmodedensitylimitstudiesinjetandaug AT edelabie comparativehmodedensitylimitstudiesinjetandaug AT teich comparativehmodedensitylimitstudiesinjetandaug AT hgesser comparativehmodedensitylimitstudiesinjetandaug AT mgroth comparativehmodedensitylimitstudiesinjetandaug AT cguillemaut comparativehmodedensitylimitstudiesinjetandaug AT sjachmich comparativehmodedensitylimitstudiesinjetandaug AT ajarvinen comparativehmodedensitylimitstudiesinjetandaug AT ejoffrin comparativehmodedensitylimitstudiesinjetandaug AT akallenbach comparativehmodedensitylimitstudiesinjetandaug AT ukruezi comparativehmodedensitylimitstudiesinjetandaug AT plang comparativehmodedensitylimitstudiesinjetandaug AT chlinsmeier comparativehmodedensitylimitstudiesinjetandaug AT cglowry comparativehmodedensitylimitstudiesinjetandaug AT cfmaggi comparativehmodedensitylimitstudiesinjetandaug AT gfmatthews comparativehmodedensitylimitstudiesinjetandaug AT agmeigs comparativehmodedensitylimitstudiesinjetandaug AT phmertens comparativehmodedensitylimitstudiesinjetandaug AT freimold comparativehmodedensitylimitstudiesinjetandaug AT jschweinzer comparativehmodedensitylimitstudiesinjetandaug AT gsips comparativehmodedensitylimitstudiesinjetandaug AT mstamp comparativehmodedensitylimitstudiesinjetandaug AT eviezzer comparativehmodedensitylimitstudiesinjetandaug AT mwischmeier comparativehmodedensitylimitstudiesinjetandaug AT hzohm comparativehmodedensitylimitstudiesinjetandaug |
_version_ |
1725964030609195008 |
spelling |
doaj-fbecdc43105e46f49241a5fae4a54bd12020-11-24T21:30:05ZengElsevierNuclear Materials and Energy2352-17912017-08-0112100110Comparative H-mode density limit studies in JET and AUGA. Huber0M. Bernert1S. Brezinsek2A.V. Chankin3G. Sergienko4V. Huber5S. Wiesen6P. Abreu7M.N.A. Beurskens8A. Boboc9M. Brix10G. Calabrò11D. Carralero12E. Delabie13T. Eich14H.G. Esser15M. Groth16C. Guillemaut17S. Jachmich18A. Järvinen19E. Joffrin20A. Kallenbach21U. Kruezi22P. Lang23Ch. Linsmeier24C.G. Lowry25C.F. Maggi26G.F. Matthews27A.G. Meigs28Ph. Mertens29F. Reimold30J. Schweinzer31G. Sips32M. Stamp33E. Viezzer34M. Wischmeier35H. Zohm36Corresponding author.; EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB, UK; Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Supercomputing Centre, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyInstituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Lisboa, PortugalCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKENEA for EUROfusion, via E. Fermi 45, 00044 Frascati Rome, ItalyMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyOak Ridge National Laboratory, Oak Ridge, TN, USAMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyAalto University, Otakaari 4, 02015 Espoo, FinlandInstituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Lisboa, PortugalLaboratory for Plasma Physics, ERM/KMS, B-1000 Brussels, BelgiumAalto University, Otakaari 4, 02015 Espoo, FinlandCEA, IRFM, F-13108St Paul lez Durance, FranceMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKCCFE, Culham Science Centre, Abingdon, OX14 3DB, UKMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyMax-Planck-Institut für Plasmaphysik, D-85748 Garching, GermanyIdentification of the mechanisms for the H-mode density limit in machines with fully metallic walls, and their scaling to future devices is essential to find for these machines the optimal operational boundaries with the highest attainable density and confinement. Systematic investigations of H-mode density limit plasmas in experiments with deuterium external gas fuelling have been performed on machines with fully metallic walls, JET and AUG and results have been compared with one another.Basically, the operation phases are identical for both tokamaks: the stable H-mode phase, degrading H-mode phase, breakdown of the H-mode with energy confinement deterioration usually accompanied by a dithering cycling phase, followed by the l-mode phase. The observed H-mode density limit on both machines is found close to the Greenwald limit (n/nGW=0.8–1.1 in the observed magnetic configurations). The similar behavior of the radiation on both tokamaks demonstrates that the density limit (DL) is neither related to additional energy losses from the confined region by radiation, nor to an inward collapse of the hot discharge core induced by overcooling of the plasma periphery by radiation.It was observed on both machines that detachment, as well as the X-point MARFE itself, does not trigger a transition in the confinement regime and thus does not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the transition from H- to l-mode.The measured Greenwald fractions are found to be consistent with the predictions from different theoretical models [16,30] based on MHD instability theory in the near-SOL. Keywords: Density limit, H-mode, Detachment, Greenwald fraction, JET, ASDEX Upgradehttp://www.sciencedirect.com/science/article/pii/S2352179116300588 |