Effect of Supracervical Apposition and Spontaneous Labour on Apoptosis and Matrix Metalloproteinases in Human Fetal Membranes

Background. Apoptosis and matrix metalloproteinase (MMP-9) are capable of hydrolysing components of the extracellular matrix and weakening the fetal membranes which leads to eventual rupture, a key process of human parturition. The aim of this study was to determine the effect of supracervical appos...

Full description

Bibliographic Details
Main Authors: Mahalia Chai, Susan P. Walker, Clyde Riley, Gregory E. Rice, Michael Permezel, Martha Lappas
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2013/316146
Description
Summary:Background. Apoptosis and matrix metalloproteinase (MMP-9) are capable of hydrolysing components of the extracellular matrix and weakening the fetal membranes which leads to eventual rupture, a key process of human parturition. The aim of this study was to determine the effect of supracervical apposition and spontaneous labour on apoptosis and MMP-9 in human fetal membranes at term. Methods. Fetal membranes were obtained from term non-labouring supracervical site (SCS) and compared to (i) a paired distal site (DS) or (ii) site of rupture (SOR) after spontaneous labour onset. Results. The expression of the proapoptotic markers Bax, Smac, Fas, FasL, caspase-3, and PARP, was significantly higher in the non-labouring SCS chorion compared to paired DS. Bax, Smac, FasL, caspase-3, and PARP staining was higher in the non-labouring SCS fetal membranes than that in the post-labour SOR. MMP-9 expression and activity were higher in the post-labour SOR fetal membranes compared to non-labouring SCS fetal membranes. Conclusion. Components of the apoptotic signalling pathways and MMP-9 may play a role in rupture and labour. Non-labouring SCS fetal membranes display altered morphology and altered apoptotic biochemical characteristics in preparation for labour, while the laboured SOR displays unique MMP characteristics.
ISSN:2314-6133
2314-6141