The intercellular synchronization of Ca2+ oscillations evaluates Cx36-dependent coupling.

Connexin36 (Cx36) plays an important role in insulin secretion by controlling the intercellular synchronization of Ca(2+) transients induced during stimulation. The lack of drugs acting on Cx36 channels is a major limitation in further unraveling the molecular mechanism underlying this effect. To sc...

Full description

Bibliographic Details
Main Authors: Sabine Bavamian, Helena Pontes, José Cancela, Anne Charollais, Sergei Startchik, Dimitri Van de Ville, Paolo Meda
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3405138?pdf=render
Description
Summary:Connexin36 (Cx36) plays an important role in insulin secretion by controlling the intercellular synchronization of Ca(2+) transients induced during stimulation. The lack of drugs acting on Cx36 channels is a major limitation in further unraveling the molecular mechanism underlying this effect. To screen for such drugs, we have developed an assay allowing for a semi-automatic, fluorimetric quantification of Ca(2+) transients in large populations of MIN6 cells. Here, we show that (1) compared to control cells, MIN6 cells with reduced Cx36 expression or function showed decreased synchrony of glucose-induced Ca(2+) oscillations; (2) glibenclamide, a sulphonylurea which promotes Cx36 junctions and coupling, increased the number of synchronous MIN6 cells, whereas quinine, an antimalarial drug which inhibits Cx36-dependent coupling, decreased this proportion; (3) several drugs were identified that altered the intercellular Ca(2+) synchronization, cell coupling and distribution of Cx36; (4) some of them also affected insulin content. The data indicate that the intercellular synchronization of Ca(2+) oscillations provides a reliable and non-invasive measurement of Cx36-dependent coupling, which is useful to identify novel drugs affecting the function of β-cells, neurons, and neuron-related cells that express Cx36.
ISSN:1932-6203