Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS_{3}

Layered van der Waals 2D magnetic materials are of great interest in fundamental condensed-matter physics research, as well as for potential applications in spintronics and device physics. We present neutron powder diffraction data using new ultrahigh-pressure techniques to measure the magnetic stru...

Full description

Bibliographic Details
Main Authors: Matthew J. Coak, David M. Jarvis, Hayrullo Hamidov, Andrew R. Wildes, Joseph A. M. Paddison, Cheng Liu, Charles R. S. Haines, Ngoc T. Dang, Sergey E. Kichanov, Boris N. Savenko, Sungmin Lee, Marie Kratochvílová, Stefan Klotz, Thomas C. Hansen, Denis P. Kozlenko, Je-Geun Park, Siddharth S. Saxena
Format: Article
Language:English
Published: American Physical Society 2021-02-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.11.011024
id doaj-fcec1e79eb7648c68793eb997239cbfd
record_format Article
spelling doaj-fcec1e79eb7648c68793eb997239cbfd2021-02-05T15:10:11ZengAmerican Physical SocietyPhysical Review X2160-33082021-02-0111101102410.1103/PhysRevX.11.011024Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS_{3}Matthew J. CoakDavid M. JarvisHayrullo HamidovAndrew R. WildesJoseph A. M. PaddisonCheng LiuCharles R. S. HainesNgoc T. DangSergey E. KichanovBoris N. SavenkoSungmin LeeMarie KratochvílováStefan KlotzThomas C. HansenDenis P. KozlenkoJe-Geun ParkSiddharth S. SaxenaLayered van der Waals 2D magnetic materials are of great interest in fundamental condensed-matter physics research, as well as for potential applications in spintronics and device physics. We present neutron powder diffraction data using new ultrahigh-pressure techniques to measure the magnetic structure of Mott-insulating 2D honeycomb antiferromagnet FePS_{3} at pressures up to 183 kbar and temperatures down to 80 K. These data are complemented by high-pressure magnetometry and reverse Monte Carlo modeling of the spin configurations. As pressure is applied, the previously measured ambient-pressure magnetic order switches from an antiferromagnetic to a ferromagnetic interplanar interaction and from 2D-like to 3D-like character. The overall antiferromagnetic structure within the ab planes, ferromagnetic chains antiferromagnetically coupled, is preserved, but the magnetic propagation vector is altered from k=(0,1,1/2) to k=(0,1,0), a halving of the magnetic unit cell size. At higher pressures, coincident with the second structural transition and the insulator-metal transition in this compound, we observe a suppression of this long-range order and emergence of a form of magnetic short-range order which survives above room temperature. Reverse Monte Carlo fitting suggests this phase to be a short-ranged version of the original ambient-pressure structure—with the Fe moment size remaining of similar magnitude and with a return to antiferromagnetic interplanar correlations. The persistence of magnetism well into the HP-II metallic state is an observation in contradiction with previous x-ray spectroscopy results which suggest a spin-crossover transition.http://doi.org/10.1103/PhysRevX.11.011024
collection DOAJ
language English
format Article
sources DOAJ
author Matthew J. Coak
David M. Jarvis
Hayrullo Hamidov
Andrew R. Wildes
Joseph A. M. Paddison
Cheng Liu
Charles R. S. Haines
Ngoc T. Dang
Sergey E. Kichanov
Boris N. Savenko
Sungmin Lee
Marie Kratochvílová
Stefan Klotz
Thomas C. Hansen
Denis P. Kozlenko
Je-Geun Park
Siddharth S. Saxena
spellingShingle Matthew J. Coak
David M. Jarvis
Hayrullo Hamidov
Andrew R. Wildes
Joseph A. M. Paddison
Cheng Liu
Charles R. S. Haines
Ngoc T. Dang
Sergey E. Kichanov
Boris N. Savenko
Sungmin Lee
Marie Kratochvílová
Stefan Klotz
Thomas C. Hansen
Denis P. Kozlenko
Je-Geun Park
Siddharth S. Saxena
Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS_{3}
Physical Review X
author_facet Matthew J. Coak
David M. Jarvis
Hayrullo Hamidov
Andrew R. Wildes
Joseph A. M. Paddison
Cheng Liu
Charles R. S. Haines
Ngoc T. Dang
Sergey E. Kichanov
Boris N. Savenko
Sungmin Lee
Marie Kratochvílová
Stefan Klotz
Thomas C. Hansen
Denis P. Kozlenko
Je-Geun Park
Siddharth S. Saxena
author_sort Matthew J. Coak
title Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS_{3}
title_short Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS_{3}
title_full Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS_{3}
title_fullStr Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS_{3}
title_full_unstemmed Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS_{3}
title_sort emergent magnetic phases in pressure-tuned van der waals antiferromagnet feps_{3}
publisher American Physical Society
series Physical Review X
issn 2160-3308
publishDate 2021-02-01
description Layered van der Waals 2D magnetic materials are of great interest in fundamental condensed-matter physics research, as well as for potential applications in spintronics and device physics. We present neutron powder diffraction data using new ultrahigh-pressure techniques to measure the magnetic structure of Mott-insulating 2D honeycomb antiferromagnet FePS_{3} at pressures up to 183 kbar and temperatures down to 80 K. These data are complemented by high-pressure magnetometry and reverse Monte Carlo modeling of the spin configurations. As pressure is applied, the previously measured ambient-pressure magnetic order switches from an antiferromagnetic to a ferromagnetic interplanar interaction and from 2D-like to 3D-like character. The overall antiferromagnetic structure within the ab planes, ferromagnetic chains antiferromagnetically coupled, is preserved, but the magnetic propagation vector is altered from k=(0,1,1/2) to k=(0,1,0), a halving of the magnetic unit cell size. At higher pressures, coincident with the second structural transition and the insulator-metal transition in this compound, we observe a suppression of this long-range order and emergence of a form of magnetic short-range order which survives above room temperature. Reverse Monte Carlo fitting suggests this phase to be a short-ranged version of the original ambient-pressure structure—with the Fe moment size remaining of similar magnitude and with a return to antiferromagnetic interplanar correlations. The persistence of magnetism well into the HP-II metallic state is an observation in contradiction with previous x-ray spectroscopy results which suggest a spin-crossover transition.
url http://doi.org/10.1103/PhysRevX.11.011024
work_keys_str_mv AT matthewjcoak emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT davidmjarvis emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT hayrullohamidov emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT andrewrwildes emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT josephampaddison emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT chengliu emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT charlesrshaines emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT ngoctdang emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT sergeyekichanov emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT borisnsavenko emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT sungminlee emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT mariekratochvilova emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT stefanklotz emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT thomaschansen emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT denispkozlenko emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT jegeunpark emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
AT siddharthssaxena emergentmagneticphasesinpressuretunedvanderwaalsantiferromagnetfeps3
_version_ 1724283594189307904