Specific and Non-Invasive Fluorescent Labelling of Extracellular Vesicles for Evaluation of Intracellular Processing by Intestinal Epithelial Cells

The presence of extracellular vesicles (EVs) in milk has gained interest due to their capacity to modulate the infant’s intestinal and immune system. Studies suggest that milk EVs are enriched in immune-modulating proteins and miRNA, highlighting their possible health benefits to infants. To assess...

Full description

Bibliographic Details
Main Authors: Maria S. Hansen, Ida S. E. Gadegaard, Eva C. Arnspang, Kristine Blans, Lene N. Nejsum, Jan T. Rasmussen
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Biomedicines
Subjects:
Online Access:https://www.mdpi.com/2227-9059/8/7/211
Description
Summary:The presence of extracellular vesicles (EVs) in milk has gained interest due to their capacity to modulate the infant’s intestinal and immune system. Studies suggest that milk EVs are enriched in immune-modulating proteins and miRNA, highlighting their possible health benefits to infants. To assess uptake of milk EVs by intestinal epithelial cells, a method was developed using labelling of isolated EVs with fluorophore-conjugated lactadherin. Lactadherin is a generic and validated EV marker, which enables an effective labelling of phosphatidylserine (PS) exposing EVs. Labelled EVs could effectively be used to describe a dose- and time-dependent uptake into the intestinal epithelial Caco-2 cell line. Additionally, fluorescence microscopy was employed to show that EVs colocalize with endosomal markers and lysosomes, indicating that EVs are taken up via general endocytotic mechanisms. Collectively, a method to specifically label isolated EVs is presented and employed to study the uptake of milk EVs by intestinal epithelial cells.
ISSN:2227-9059