Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere
<p>The first atmospheric observations of octafluorooxolane (octafluorotetrahydrofuran, <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span>), a persistent gre...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-03-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/19/3481/2019/acp-19-3481-2019.pdf |
id |
doaj-fdcacdee6d014cf386b1ae68baa69840 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. K. Vollmer F. Bernard F. Bernard F. Bernard B. Mitrevski L. P. Steele C. M. Trudinger S. Reimann R. L. Langenfelds P. B. Krummel P. J. Fraser D. M. Etheridge M. A. J. Curran M. A. J. Curran J. B. Burkholder |
spellingShingle |
M. K. Vollmer F. Bernard F. Bernard F. Bernard B. Mitrevski L. P. Steele C. M. Trudinger S. Reimann R. L. Langenfelds P. B. Krummel P. J. Fraser D. M. Etheridge M. A. J. Curran M. A. J. Curran J. B. Burkholder Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere Atmospheric Chemistry and Physics |
author_facet |
M. K. Vollmer F. Bernard F. Bernard F. Bernard B. Mitrevski L. P. Steele C. M. Trudinger S. Reimann R. L. Langenfelds P. B. Krummel P. J. Fraser D. M. Etheridge M. A. J. Curran M. A. J. Curran J. B. Burkholder |
author_sort |
M. K. Vollmer |
title |
Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere |
title_short |
Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere |
title_full |
Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere |
title_fullStr |
Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere |
title_full_unstemmed |
Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere |
title_sort |
abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-c<sub>4</sub>f<sub>8</sub>o) in the atmosphere |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2019-03-01 |
description |
<p>The first atmospheric observations of octafluorooxolane
(octafluorotetrahydrofuran, <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span>), a persistent greenhouse gas, are
reported. In addition, a complementary laboratory study of its most likely atmospheric
loss processes, its infrared absorption spectrum, and global warming potential (GWP) are
reported. First atmospheric measurements of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> are provided from the
Cape Grim Air Archive (41<span class="inline-formula"><sup>∘</sup></span> S, Tasmania, Australia, 1978–present), supplemented
by two firn air samples from Antarctica, in situ measurements of ambient air at
Aspendale, Victoria (38<span class="inline-formula"><sup>∘</sup></span> S), and a few archived air samples from the Northern
Hemisphere. The atmospheric abundance in the Southern Hemisphere has monotonically grown
over the past decades and leveled at 74 ppq (parts per quadrillion, femtomole per mole
in dry air) by 2015–2018. The growth rate of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> has decreased from a
maximum in 2004 of 4.0 to <span class="inline-formula"><0.25</span> ppq yr<span class="inline-formula"><sup>−1</sup></span> in 2017 and 2018. Using a 12-box
atmospheric transport model, globally averaged yearly emissions and abundances of
<span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> are calculated for 1951–2018. Emissions, which we speculate to
derive predominantly from usage of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> as a solvent in the
semiconductor industry, peaked at 0.15 (<span class="inline-formula">±0.04</span>, 2<span class="inline-formula"><i>σ</i></span>) kt yr<span class="inline-formula"><sup>−1</sup></span> in 2004 and
have since declined to <span class="inline-formula"><0.015</span> kt yr<span class="inline-formula"><sup>−1</sup></span> in 2017 and 2018. Cumulative emissions
over the full range of our record amount to 2.8 (2.4–3.3) kt, which correspond to 34 Mt
of <span class="inline-formula">CO<sub>2</sub></span>-equivalent emissions. Infrared and ultraviolet absorption spectra for
<span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> as well as the reactive channel rate coefficient for the
<span class="inline-formula">O(<sup>1</sup>D)</span> <span class="inline-formula">+</span> <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> reaction were determined from laboratory
studies. On the basis of these experiments, a radiative efficiency of
0.430 W m<span class="inline-formula"><sup>−2</sup></span> ppb<span class="inline-formula"><sup>−1</sup></span> (parts per billion, nanomol mol<span class="inline-formula"><sup>−1</sup></span>) was determined,
which is one of the largest found for synthetic greenhouse gases. The global annually
averaged atmospheric lifetime, including mesospheric loss, is estimated to be
<span class="inline-formula">>3</span>000 years. GWPs of 8975, 12 000, and 16 000 are estimated for the 20-, 100-, and
500-year time horizons, respectively.</p> |
url |
https://www.atmos-chem-phys.net/19/3481/2019/acp-19-3481-2019.pdf |
work_keys_str_mv |
AT mkvollmer abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT fbernard abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT fbernard abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT fbernard abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT bmitrevski abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT lpsteele abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT cmtrudinger abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT sreimann abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT rllangenfelds abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT pbkrummel abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT pjfraser abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT dmetheridge abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT majcurran abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT majcurran abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere AT jbburkholder abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere |
_version_ |
1716757853829595136 |
spelling |
doaj-fdcacdee6d014cf386b1ae68baa698402020-11-24T21:09:37ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-03-01193481349210.5194/acp-19-3481-2019Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphereM. K. Vollmer0F. Bernard1F. Bernard2F. Bernard3B. Mitrevski4L. P. Steele5C. M. Trudinger6S. Reimann7R. L. Langenfelds8P. B. Krummel9P. J. Fraser10D. M. Etheridge11M. A. J. Curran12M. A. J. Curran13J. B. Burkholder14Laboratory for Air Pollution and Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandEarth System Research Laboratory, NOAA, National Oceanic and Atmospheric Administration, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAnow at: Institut de Combustion Aérothermique, Réactivité et Environnement, Centre National de la Recherche Scientifique, Observatoire des Sciences de l'Univers en région Centre, Orléans, FranceClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaLaboratory for Air Pollution and Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaAustralian Antarctic Division, Kingston, Tasmania, AustraliaAntarctic Climate & Ecosystems Cooperative Research Centre, Hobart, Tasmania, AustraliaEarth System Research Laboratory, NOAA, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA<p>The first atmospheric observations of octafluorooxolane (octafluorotetrahydrofuran, <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span>), a persistent greenhouse gas, are reported. In addition, a complementary laboratory study of its most likely atmospheric loss processes, its infrared absorption spectrum, and global warming potential (GWP) are reported. First atmospheric measurements of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> are provided from the Cape Grim Air Archive (41<span class="inline-formula"><sup>∘</sup></span> S, Tasmania, Australia, 1978–present), supplemented by two firn air samples from Antarctica, in situ measurements of ambient air at Aspendale, Victoria (38<span class="inline-formula"><sup>∘</sup></span> S), and a few archived air samples from the Northern Hemisphere. The atmospheric abundance in the Southern Hemisphere has monotonically grown over the past decades and leveled at 74 ppq (parts per quadrillion, femtomole per mole in dry air) by 2015–2018. The growth rate of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> has decreased from a maximum in 2004 of 4.0 to <span class="inline-formula"><0.25</span> ppq yr<span class="inline-formula"><sup>−1</sup></span> in 2017 and 2018. Using a 12-box atmospheric transport model, globally averaged yearly emissions and abundances of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> are calculated for 1951–2018. Emissions, which we speculate to derive predominantly from usage of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> as a solvent in the semiconductor industry, peaked at 0.15 (<span class="inline-formula">±0.04</span>, 2<span class="inline-formula"><i>σ</i></span>) kt yr<span class="inline-formula"><sup>−1</sup></span> in 2004 and have since declined to <span class="inline-formula"><0.015</span> kt yr<span class="inline-formula"><sup>−1</sup></span> in 2017 and 2018. Cumulative emissions over the full range of our record amount to 2.8 (2.4–3.3) kt, which correspond to 34 Mt of <span class="inline-formula">CO<sub>2</sub></span>-equivalent emissions. Infrared and ultraviolet absorption spectra for <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> as well as the reactive channel rate coefficient for the <span class="inline-formula">O(<sup>1</sup>D)</span> <span class="inline-formula">+</span> <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> reaction were determined from laboratory studies. On the basis of these experiments, a radiative efficiency of 0.430 W m<span class="inline-formula"><sup>−2</sup></span> ppb<span class="inline-formula"><sup>−1</sup></span> (parts per billion, nanomol mol<span class="inline-formula"><sup>−1</sup></span>) was determined, which is one of the largest found for synthetic greenhouse gases. The global annually averaged atmospheric lifetime, including mesospheric loss, is estimated to be <span class="inline-formula">>3</span>000 years. GWPs of 8975, 12 000, and 16 000 are estimated for the 20-, 100-, and 500-year time horizons, respectively.</p>https://www.atmos-chem-phys.net/19/3481/2019/acp-19-3481-2019.pdf |