Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere

<p>The first atmospheric observations of octafluorooxolane (octafluorotetrahydrofuran, <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span>), a persistent gre...

Full description

Bibliographic Details
Main Authors: M. K. Vollmer, F. Bernard, B. Mitrevski, L. P. Steele, C. M. Trudinger, S. Reimann, R. L. Langenfelds, P. B. Krummel, P. J. Fraser, D. M. Etheridge, M. A. J. Curran, J. B. Burkholder
Format: Article
Language:English
Published: Copernicus Publications 2019-03-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/3481/2019/acp-19-3481-2019.pdf
id doaj-fdcacdee6d014cf386b1ae68baa69840
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author M. K. Vollmer
F. Bernard
F. Bernard
F. Bernard
B. Mitrevski
L. P. Steele
C. M. Trudinger
S. Reimann
R. L. Langenfelds
P. B. Krummel
P. J. Fraser
D. M. Etheridge
M. A. J. Curran
M. A. J. Curran
J. B. Burkholder
spellingShingle M. K. Vollmer
F. Bernard
F. Bernard
F. Bernard
B. Mitrevski
L. P. Steele
C. M. Trudinger
S. Reimann
R. L. Langenfelds
P. B. Krummel
P. J. Fraser
D. M. Etheridge
M. A. J. Curran
M. A. J. Curran
J. B. Burkholder
Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere
Atmospheric Chemistry and Physics
author_facet M. K. Vollmer
F. Bernard
F. Bernard
F. Bernard
B. Mitrevski
L. P. Steele
C. M. Trudinger
S. Reimann
R. L. Langenfelds
P. B. Krummel
P. J. Fraser
D. M. Etheridge
M. A. J. Curran
M. A. J. Curran
J. B. Burkholder
author_sort M. K. Vollmer
title Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere
title_short Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere
title_full Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere
title_fullStr Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere
title_full_unstemmed Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere
title_sort abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-c<sub>4</sub>f<sub>8</sub>o) in the atmosphere
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2019-03-01
description <p>The first atmospheric observations of octafluorooxolane (octafluorotetrahydrofuran, <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span>), a persistent greenhouse gas, are reported. In addition, a complementary laboratory study of its most likely atmospheric loss processes, its infrared absorption spectrum, and global warming potential (GWP) are reported. First atmospheric measurements of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> are provided from the Cape Grim Air Archive (41<span class="inline-formula"><sup>∘</sup></span>&thinsp;S, Tasmania, Australia, 1978–present), supplemented by two firn air samples from Antarctica, in situ measurements of ambient air at Aspendale, Victoria (38<span class="inline-formula"><sup>∘</sup></span>&thinsp;S), and a few archived air samples from the Northern Hemisphere. The atmospheric abundance in the Southern Hemisphere has monotonically grown over the past decades and leveled at 74&thinsp;ppq (parts per quadrillion, femtomole per mole in dry air) by 2015–2018. The growth rate of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> has decreased from a maximum in 2004 of 4.0 to <span class="inline-formula">&lt;0.25</span>&thinsp;ppq&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> in 2017 and 2018. Using a 12-box atmospheric transport model, globally averaged yearly emissions and abundances of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> are calculated for 1951–2018. Emissions, which we speculate to derive predominantly from usage of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> as a solvent in the semiconductor industry, peaked at 0.15 (<span class="inline-formula">±0.04</span>, 2<span class="inline-formula"><i>σ</i></span>)&thinsp;kt&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> in 2004 and have since declined to <span class="inline-formula">&lt;0.015</span>&thinsp;kt&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> in 2017 and 2018. Cumulative emissions over the full range of our record amount to 2.8 (2.4–3.3)&thinsp;kt, which correspond to 34 Mt of <span class="inline-formula">CO<sub>2</sub></span>-equivalent emissions. Infrared and ultraviolet absorption spectra for <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> as well as the reactive channel rate coefficient for the <span class="inline-formula">O(<sup>1</sup>D)</span>&thinsp;<span class="inline-formula">+</span>&thinsp;<span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> reaction were determined from laboratory studies. On the basis of these experiments, a radiative efficiency of 0.430&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span>&thinsp;ppb<span class="inline-formula"><sup>−1</sup></span> (parts per billion, nanomol&thinsp;mol<span class="inline-formula"><sup>−1</sup></span>) was determined, which is one of the largest found for synthetic greenhouse gases. The global annually averaged atmospheric lifetime, including mesospheric loss, is estimated to be <span class="inline-formula">&gt;3</span>000 years. GWPs of 8975, 12&thinsp;000, and 16&thinsp;000 are estimated for the 20-, 100-, and 500-year time horizons, respectively.</p>
url https://www.atmos-chem-phys.net/19/3481/2019/acp-19-3481-2019.pdf
work_keys_str_mv AT mkvollmer abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT fbernard abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT fbernard abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT fbernard abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT bmitrevski abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT lpsteele abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT cmtrudinger abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT sreimann abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT rllangenfelds abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT pbkrummel abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT pjfraser abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT dmetheridge abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT majcurran abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT majcurran abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
AT jbburkholder abundancesemissionsandlossprocessesofthelonglivedandpotentgreenhousegasoctafluorooxolaneoctafluorotetrahydrofuranicicsub4subfsub8subointheatmosphere
_version_ 1716757853829595136
spelling doaj-fdcacdee6d014cf386b1ae68baa698402020-11-24T21:09:37ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-03-01193481349210.5194/acp-19-3481-2019Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphereM. K. Vollmer0F. Bernard1F. Bernard2F. Bernard3B. Mitrevski4L. P. Steele5C. M. Trudinger6S. Reimann7R. L. Langenfelds8P. B. Krummel9P. J. Fraser10D. M. Etheridge11M. A. J. Curran12M. A. J. Curran13J. B. Burkholder14Laboratory for Air Pollution and Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandEarth System Research Laboratory, NOAA, National Oceanic and Atmospheric Administration, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAnow at: Institut de Combustion Aérothermique, Réactivité et Environnement, Centre National de la Recherche Scientifique, Observatoire des Sciences de l'Univers en région Centre, Orléans, FranceClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaLaboratory for Air Pollution and Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaAustralian Antarctic Division, Kingston, Tasmania, AustraliaAntarctic Climate & Ecosystems Cooperative Research Centre, Hobart, Tasmania, AustraliaEarth System Research Laboratory, NOAA, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA<p>The first atmospheric observations of octafluorooxolane (octafluorotetrahydrofuran, <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span>), a persistent greenhouse gas, are reported. In addition, a complementary laboratory study of its most likely atmospheric loss processes, its infrared absorption spectrum, and global warming potential (GWP) are reported. First atmospheric measurements of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> are provided from the Cape Grim Air Archive (41<span class="inline-formula"><sup>∘</sup></span>&thinsp;S, Tasmania, Australia, 1978–present), supplemented by two firn air samples from Antarctica, in situ measurements of ambient air at Aspendale, Victoria (38<span class="inline-formula"><sup>∘</sup></span>&thinsp;S), and a few archived air samples from the Northern Hemisphere. The atmospheric abundance in the Southern Hemisphere has monotonically grown over the past decades and leveled at 74&thinsp;ppq (parts per quadrillion, femtomole per mole in dry air) by 2015–2018. The growth rate of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> has decreased from a maximum in 2004 of 4.0 to <span class="inline-formula">&lt;0.25</span>&thinsp;ppq&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> in 2017 and 2018. Using a 12-box atmospheric transport model, globally averaged yearly emissions and abundances of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> are calculated for 1951–2018. Emissions, which we speculate to derive predominantly from usage of <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> as a solvent in the semiconductor industry, peaked at 0.15 (<span class="inline-formula">±0.04</span>, 2<span class="inline-formula"><i>σ</i></span>)&thinsp;kt&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> in 2004 and have since declined to <span class="inline-formula">&lt;0.015</span>&thinsp;kt&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> in 2017 and 2018. Cumulative emissions over the full range of our record amount to 2.8 (2.4–3.3)&thinsp;kt, which correspond to 34 Mt of <span class="inline-formula">CO<sub>2</sub></span>-equivalent emissions. Infrared and ultraviolet absorption spectra for <span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> as well as the reactive channel rate coefficient for the <span class="inline-formula">O(<sup>1</sup>D)</span>&thinsp;<span class="inline-formula">+</span>&thinsp;<span class="inline-formula"><i>c</i></span>-<span class="inline-formula">C<sub>4</sub>F<sub>8</sub>O</span> reaction were determined from laboratory studies. On the basis of these experiments, a radiative efficiency of 0.430&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span>&thinsp;ppb<span class="inline-formula"><sup>−1</sup></span> (parts per billion, nanomol&thinsp;mol<span class="inline-formula"><sup>−1</sup></span>) was determined, which is one of the largest found for synthetic greenhouse gases. The global annually averaged atmospheric lifetime, including mesospheric loss, is estimated to be <span class="inline-formula">&gt;3</span>000 years. GWPs of 8975, 12&thinsp;000, and 16&thinsp;000 are estimated for the 20-, 100-, and 500-year time horizons, respectively.</p>https://www.atmos-chem-phys.net/19/3481/2019/acp-19-3481-2019.pdf