Validation of Regional-Scale Remote Sensing Products in China: From Site to Network

Validation is mandatory to quantify the reliability of remote sensing products (RSPs). However, this process is not straightforward and usually presents formidable challenges in terms of both theory and real-world operations. In this context, a dedicated validation initiative was launched in China,...

Full description

Bibliographic Details
Main Authors: Shuguo Wang, Xin Li, Yong Ge, Rui Jin, Mingguo Ma, Qinhuo Liu, Jianguang Wen, Shaomin Liu
Format: Article
Language:English
Published: MDPI AG 2016-11-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/8/12/980
Description
Summary:Validation is mandatory to quantify the reliability of remote sensing products (RSPs). However, this process is not straightforward and usually presents formidable challenges in terms of both theory and real-world operations. In this context, a dedicated validation initiative was launched in China, and we identified a validation strategy (VS). This overall VS focuses on validating regional-scale RSPs with a systematic site-to-network concept, consisting of four main components: (1) general guidelines and technical specifications to guide users in validating various land RSPs, particularly aiming to further develop in situ sampling schemes and scaling approaches to acquire ground truth at the pixel scale over heterogeneous surfaces; (2) sound site-based validation activities, conducted through multi-scale, multi-platform, and multi-source observations to experimentally examine and improve the first component; (3) a national validation network to allow for comprehensive assessment of RSPs from site or regional scales to the national scale across various zones; and (4) an operational RSP evaluation system to implement operational validation applications. Research progress on the development of these four components is described in this paper. Some representative research results, with respect to the development of sampling methods and site-based validation activities, are also highlighted. The development of this VS improves our understanding of validation issues, especially to facilitate validating RSPs over heterogeneous land surfaces both at the pixel scale level and the product level.
ISSN:2072-4292