Underwater Leidenfrost nanochemistry for creation of size-tailored zinc peroxide cancer nanotherapeutics
Water can function as a sustainable reactor for the synthesis of size-controlled, functional nanoparticles. Here, the authors introduce an underwater Leidenfrost synthesis that reproduces the dynamic chemistry of the deep ocean, in which anticancer therapeutic ZnO2nanoclusters form in an overheated...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-05-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/ncomms15319 |
Summary: | Water can function as a sustainable reactor for the synthesis of size-controlled, functional nanoparticles. Here, the authors introduce an underwater Leidenfrost synthesis that reproduces the dynamic chemistry of the deep ocean, in which anticancer therapeutic ZnO2nanoclusters form in an overheated zone and migrate to colder water to continue growth. |
---|---|
ISSN: | 2041-1723 |