Schwinger pair production with ultracold atoms

We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron–positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to pla...

Full description

Bibliographic Details
Main Authors: V. Kasper, F. Hebenstreit, M.K. Oberthaler, J. Berges
Format: Article
Language:English
Published: Elsevier 2016-09-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S037026931630377X
id doaj-fe142d2529854b4abe65d2b8b7248a3d
record_format Article
spelling doaj-fe142d2529854b4abe65d2b8b7248a3d2020-11-25T01:01:38ZengElsevierPhysics Letters B0370-26931873-24452016-09-01760C74274610.1016/j.physletb.2016.07.036Schwinger pair production with ultracold atomsV. Kasper0F. Hebenstreit1M.K. Oberthaler2J. Berges3Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, GermanyAlbert Einstein Center, Institut für Theoretische Physik, Universität Bern, Sidlerstrasse 5, 3012 Bern, SwitzerlandKirchhoff Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, GermanyInstitut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, GermanyWe consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron–positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to plasma oscillations. Unlike previous investigations on quantum link models, we focus on the infinite-dimensional Hilbert space of QED and show that it may be well approximated by experiments employing Bose–Einstein condensates interacting with fermionic atoms. Numerical calculations based on functional integral techniques give a unique access to the physical parameters required to realize QED phenomena in a cold atom experiment. In particular, we use our approach to consider quantum link models in a yet unexplored parameter regime and give bounds for their ability to capture essential features of the physics. The results suggest a paradigmatic change towards realizations using coherent many-body states for quantum simulations of high-energy particle physics phenomena.http://www.sciencedirect.com/science/article/pii/S037026931630377X
collection DOAJ
language English
format Article
sources DOAJ
author V. Kasper
F. Hebenstreit
M.K. Oberthaler
J. Berges
spellingShingle V. Kasper
F. Hebenstreit
M.K. Oberthaler
J. Berges
Schwinger pair production with ultracold atoms
Physics Letters B
author_facet V. Kasper
F. Hebenstreit
M.K. Oberthaler
J. Berges
author_sort V. Kasper
title Schwinger pair production with ultracold atoms
title_short Schwinger pair production with ultracold atoms
title_full Schwinger pair production with ultracold atoms
title_fullStr Schwinger pair production with ultracold atoms
title_full_unstemmed Schwinger pair production with ultracold atoms
title_sort schwinger pair production with ultracold atoms
publisher Elsevier
series Physics Letters B
issn 0370-2693
1873-2445
publishDate 2016-09-01
description We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron–positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to plasma oscillations. Unlike previous investigations on quantum link models, we focus on the infinite-dimensional Hilbert space of QED and show that it may be well approximated by experiments employing Bose–Einstein condensates interacting with fermionic atoms. Numerical calculations based on functional integral techniques give a unique access to the physical parameters required to realize QED phenomena in a cold atom experiment. In particular, we use our approach to consider quantum link models in a yet unexplored parameter regime and give bounds for their ability to capture essential features of the physics. The results suggest a paradigmatic change towards realizations using coherent many-body states for quantum simulations of high-energy particle physics phenomena.
url http://www.sciencedirect.com/science/article/pii/S037026931630377X
work_keys_str_mv AT vkasper schwingerpairproductionwithultracoldatoms
AT fhebenstreit schwingerpairproductionwithultracoldatoms
AT mkoberthaler schwingerpairproductionwithultracoldatoms
AT jberges schwingerpairproductionwithultracoldatoms
_version_ 1725208197132713984