Deep Learning Applied to Scenario Classification for Lane-Keep-Assist Systems

Test, verification, and development activities of vehicles with ADAS (Advanced Driver Assistance Systems) and ADF (Automated Driving Functions) generate large amounts of measurement data. To efficiently evaluate and use this data, a generic understanding and classification of the relevant driving sc...

Full description

Bibliographic Details
Main Authors: Halil Beglerovic, Thomas Schloemicher, Steffen Metzner, Martin Horn
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/8/12/2590
Description
Summary:Test, verification, and development activities of vehicles with ADAS (Advanced Driver Assistance Systems) and ADF (Automated Driving Functions) generate large amounts of measurement data. To efficiently evaluate and use this data, a generic understanding and classification of the relevant driving scenarios is necessary. Currently, such understanding is obtained by using heuristic algorithms or even by manual inspection of sensor signals. In this paper, we apply deep learning on sensor time series data to automatically extract relevant features for classification of driving scenarios relevant for a Lane-Keep-Assist System. We compare the performance of convolutional and recurrent neural networks and propose two classification models. The first one is an online model for scenario classification during driving. The second one is an offline model for post-processing, providing higher accuracy.
ISSN:2076-3417