Shipborne observations reveal contrasting Arctic marine, Arctic terrestrial and Pacific marine aerosol properties

<p>There are few shipborne observations addressing the factors influencing the relationships of the formation and growth of aerosol particles with cloud condensation nuclei (CCN) in remote marine environments. In this study, the physical properties of aerosol particles throughout the Arctic Oc...

Full description

Bibliographic Details
Main Authors: J. Park, M. Dall'Osto, K. Park, Y. Gim, H. J. Kang, E. Jang, K.-T. Park, M. Park, S. S. Yum, J. Jung, B. Y. Lee, Y. J. Yoon
Format: Article
Language:English
Published: Copernicus Publications 2020-05-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/20/5573/2020/acp-20-5573-2020.pdf
id doaj-febb56e6f5a24d28b21630c2716a5050
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author J. Park
M. Dall'Osto
K. Park
Y. Gim
H. J. Kang
H. J. Kang
E. Jang
E. Jang
K.-T. Park
M. Park
S. S. Yum
J. Jung
B. Y. Lee
Y. J. Yoon
spellingShingle J. Park
M. Dall'Osto
K. Park
Y. Gim
H. J. Kang
H. J. Kang
E. Jang
E. Jang
K.-T. Park
M. Park
S. S. Yum
J. Jung
B. Y. Lee
Y. J. Yoon
Shipborne observations reveal contrasting Arctic marine, Arctic terrestrial and Pacific marine aerosol properties
Atmospheric Chemistry and Physics
author_facet J. Park
M. Dall'Osto
K. Park
Y. Gim
H. J. Kang
H. J. Kang
E. Jang
E. Jang
K.-T. Park
M. Park
S. S. Yum
J. Jung
B. Y. Lee
Y. J. Yoon
author_sort J. Park
title Shipborne observations reveal contrasting Arctic marine, Arctic terrestrial and Pacific marine aerosol properties
title_short Shipborne observations reveal contrasting Arctic marine, Arctic terrestrial and Pacific marine aerosol properties
title_full Shipborne observations reveal contrasting Arctic marine, Arctic terrestrial and Pacific marine aerosol properties
title_fullStr Shipborne observations reveal contrasting Arctic marine, Arctic terrestrial and Pacific marine aerosol properties
title_full_unstemmed Shipborne observations reveal contrasting Arctic marine, Arctic terrestrial and Pacific marine aerosol properties
title_sort shipborne observations reveal contrasting arctic marine, arctic terrestrial and pacific marine aerosol properties
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2020-05-01
description <p>There are few shipborne observations addressing the factors influencing the relationships of the formation and growth of aerosol particles with cloud condensation nuclei (CCN) in remote marine environments. In this study, the physical properties of aerosol particles throughout the Arctic Ocean and Pacific Ocean were measured aboard the Korean icebreaker R/V <i>Araon</i> during the summer of 2017 for 25&thinsp;d. A number of new particle formation (NPF) events and growth were frequently observed in both Arctic terrestrial and Arctic marine air masses. By striking contrast, NPF events were not detected in Pacific marine air masses. Three major aerosol categories are therefore discussed: (1)  Arctic marine (aerosol number concentration CN<span class="inline-formula"><sub>2.5</sub></span>: <span class="inline-formula">413±442</span>&thinsp;cm<span class="inline-formula"><sup>−3</sup></span>), (2) Arctic terrestrial (CN<span class="inline-formula"><sub>2.5</sub></span>: <span class="inline-formula">1622±1450</span>&thinsp;cm<span class="inline-formula"><sup>−3</sup></span>) and (3) Pacific marine (CN<span class="inline-formula"><sub>2.5</sub></span>: <span class="inline-formula">397±185</span>&thinsp;cm<span class="inline-formula"><sup>−3</sup></span>), following air mass back-trajectory analysis. A major conclusion of this study is not only that the Arctic Ocean is a major source of secondary aerosol formation relative to the Pacific Ocean but also that open-ocean sympagic and terrestrially influenced coastal ecosystems both contribute to shaping aerosol size distributions. We suggest that terrestrial ecosystems – including river outflows and tundra – strongly affect aerosol emissions in the Arctic coastal areas, possibly more than anthropogenic Arctic emissions. The increased river discharge, tundra emissions and melting sea ice should be considered in future Arctic atmospheric composition and climate simulations. The average CCN concentrations at a supersaturation ratios of 0.4&thinsp;% were <span class="inline-formula">35±40</span>&thinsp;cm<span class="inline-formula"><sup>−3</sup></span>, <span class="inline-formula">71±47</span>&thinsp;cm<span class="inline-formula"><sup>−3</sup></span> and <span class="inline-formula">204±87</span>&thinsp;cm<span class="inline-formula"><sup>−3</sup></span> for Arctic marine, Arctic terrestrial and Pacific marine aerosol categories, respectively. Our results aim to help evaluate how anthropogenic and natural atmospheric sources and processes affect the aerosol composition and cloud properties.</p>
url https://www.atmos-chem-phys.net/20/5573/2020/acp-20-5573-2020.pdf
work_keys_str_mv AT jpark shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
AT mdallosto shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
AT kpark shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
AT ygim shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
AT hjkang shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
AT hjkang shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
AT ejang shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
AT ejang shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
AT ktpark shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
AT mpark shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
AT ssyum shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
AT jjung shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
AT bylee shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
AT yjyoon shipborneobservationsrevealcontrastingarcticmarinearcticterrestrialandpacificmarineaerosolproperties
_version_ 1724868980141719552
spelling doaj-febb56e6f5a24d28b21630c2716a50502020-11-25T02:20:54ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-05-01205573559010.5194/acp-20-5573-2020Shipborne observations reveal contrasting Arctic marine, Arctic terrestrial and Pacific marine aerosol propertiesJ. Park0M. Dall'Osto1K. Park2Y. Gim3H. J. Kang4H. J. Kang5E. Jang6E. Jang7K.-T. Park8M. Park9S. S. Yum10J. Jung11B. Y. Lee12Y. J. Yoon13Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South KoreaInstitut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, SpainSchool of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South KoreaKorea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South KoreaKorea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South KoreaUniversity of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South KoreaKorea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South KoreaUniversity of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South KoreaKorea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South KoreaDepartment of Atmospheric Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South KoreaDepartment of Atmospheric Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South KoreaKorea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South KoreaKorea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South KoreaKorea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea<p>There are few shipborne observations addressing the factors influencing the relationships of the formation and growth of aerosol particles with cloud condensation nuclei (CCN) in remote marine environments. In this study, the physical properties of aerosol particles throughout the Arctic Ocean and Pacific Ocean were measured aboard the Korean icebreaker R/V <i>Araon</i> during the summer of 2017 for 25&thinsp;d. A number of new particle formation (NPF) events and growth were frequently observed in both Arctic terrestrial and Arctic marine air masses. By striking contrast, NPF events were not detected in Pacific marine air masses. Three major aerosol categories are therefore discussed: (1)  Arctic marine (aerosol number concentration CN<span class="inline-formula"><sub>2.5</sub></span>: <span class="inline-formula">413±442</span>&thinsp;cm<span class="inline-formula"><sup>−3</sup></span>), (2) Arctic terrestrial (CN<span class="inline-formula"><sub>2.5</sub></span>: <span class="inline-formula">1622±1450</span>&thinsp;cm<span class="inline-formula"><sup>−3</sup></span>) and (3) Pacific marine (CN<span class="inline-formula"><sub>2.5</sub></span>: <span class="inline-formula">397±185</span>&thinsp;cm<span class="inline-formula"><sup>−3</sup></span>), following air mass back-trajectory analysis. A major conclusion of this study is not only that the Arctic Ocean is a major source of secondary aerosol formation relative to the Pacific Ocean but also that open-ocean sympagic and terrestrially influenced coastal ecosystems both contribute to shaping aerosol size distributions. We suggest that terrestrial ecosystems – including river outflows and tundra – strongly affect aerosol emissions in the Arctic coastal areas, possibly more than anthropogenic Arctic emissions. The increased river discharge, tundra emissions and melting sea ice should be considered in future Arctic atmospheric composition and climate simulations. The average CCN concentrations at a supersaturation ratios of 0.4&thinsp;% were <span class="inline-formula">35±40</span>&thinsp;cm<span class="inline-formula"><sup>−3</sup></span>, <span class="inline-formula">71±47</span>&thinsp;cm<span class="inline-formula"><sup>−3</sup></span> and <span class="inline-formula">204±87</span>&thinsp;cm<span class="inline-formula"><sup>−3</sup></span> for Arctic marine, Arctic terrestrial and Pacific marine aerosol categories, respectively. Our results aim to help evaluate how anthropogenic and natural atmospheric sources and processes affect the aerosol composition and cloud properties.</p>https://www.atmos-chem-phys.net/20/5573/2020/acp-20-5573-2020.pdf