Low and contrasting impacts of vegetation CO<sub>2</sub> fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO<sub>2</sub> effects

<p>Elevation in atmospheric carbon dioxide concentration (eCO<span class="inline-formula"><sub>2</sub></span>) affects vegetation water use, with consequent impacts on terrestrial runoff (<span class="inline-formula"><i>Q</i></sp...

Full description

Bibliographic Details
Main Authors: Y. Yang, T. R. McVicar, D. Yang, Y. Zhang, S. Piao, S. Peng, H. E. Beck
Format: Article
Language:English
Published: Copernicus Publications 2021-06-01
Series:Hydrology and Earth System Sciences
Online Access:https://hess.copernicus.org/articles/25/3411/2021/hess-25-3411-2021.pdf
id doaj-fed23f042dfc4c729272a9b757edd4b8
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Y. Yang
T. R. McVicar
T. R. McVicar
D. Yang
Y. Zhang
S. Piao
S. Peng
H. E. Beck
spellingShingle Y. Yang
T. R. McVicar
T. R. McVicar
D. Yang
Y. Zhang
S. Piao
S. Peng
H. E. Beck
Low and contrasting impacts of vegetation CO<sub>2</sub> fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO<sub>2</sub> effects
Hydrology and Earth System Sciences
author_facet Y. Yang
T. R. McVicar
T. R. McVicar
D. Yang
Y. Zhang
S. Piao
S. Peng
H. E. Beck
author_sort Y. Yang
title Low and contrasting impacts of vegetation CO<sub>2</sub> fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO<sub>2</sub> effects
title_short Low and contrasting impacts of vegetation CO<sub>2</sub> fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO<sub>2</sub> effects
title_full Low and contrasting impacts of vegetation CO<sub>2</sub> fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO<sub>2</sub> effects
title_fullStr Low and contrasting impacts of vegetation CO<sub>2</sub> fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO<sub>2</sub> effects
title_full_unstemmed Low and contrasting impacts of vegetation CO<sub>2</sub> fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO<sub>2</sub> effects
title_sort low and contrasting impacts of vegetation co<sub>2</sub> fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–co<sub>2</sub> effects
publisher Copernicus Publications
series Hydrology and Earth System Sciences
issn 1027-5606
1607-7938
publishDate 2021-06-01
description <p>Elevation in atmospheric carbon dioxide concentration (eCO<span class="inline-formula"><sub>2</sub></span>) affects vegetation water use, with consequent impacts on terrestrial runoff (<span class="inline-formula"><i>Q</i></span>). However, the sign and magnitude of the eCO<span class="inline-formula"><sub>2</sub></span> effect on <span class="inline-formula"><i>Q</i></span> are still contentious. This is partly due to eCO<span class="inline-formula"><sub>2</sub></span>-induced changes in vegetation water use having opposing responses at the leaf scale (i.e., water-saving effect caused by partially stomatal closure) and the canopy scale (i.e., water-consuming induced by foliage cover increase), leading to highly debated conclusions among existing studies. In addition, none of the existing studies explicitly account for eCO<span class="inline-formula"><sub>2</sub></span>-induced changes to plant rooting depth that is overwhelmingly found in experimental observations. Here we develop an analytical ecohydrological framework that includes the effects of eCO<span class="inline-formula"><sub>2</sub></span> on plant leaf, canopy density, and rooting characteristics to attribute changes in <span class="inline-formula"><i>Q</i></span> and to detect the eCO<span class="inline-formula"><sub>2</sub></span> signal on <span class="inline-formula"><i>Q</i></span> via vegetation feedbacks over 1982–2010. Globally, we detect a very small decrease of <span class="inline-formula"><i>Q</i></span> induced by eCO<span class="inline-formula"><sub>2</sub></span> during 1982–2010 (<span class="inline-formula">−</span>1.7 %). Locally, we find a small positive trend (<span class="inline-formula"><i>p</i></span> <span class="inline-formula"><i>&lt;</i></span> 0.01) in the <span class="inline-formula"><i>Q</i></span>–eCO<span class="inline-formula"><sub>2</sub></span> response along a resource availability (<span class="inline-formula"><i>β</i></span>) gradient. Specifically, the <span class="inline-formula"><i>Q</i></span>–eCO<span class="inline-formula"><sub>2</sub></span> response is found to be negative (i.e., eCO<span class="inline-formula"><sub>2</sub></span> reduces <span class="inline-formula"><i>Q</i></span>) in low-<span class="inline-formula"><i>β</i></span> regions (typically dry and/or cold) and gradually changes to a small positive response (i.e., eCO<span class="inline-formula"><sub>2</sub></span> increases <span class="inline-formula"><i>Q</i></span>) in high-<span class="inline-formula"><i>β</i></span> areas (typically warm and humid). Our findings suggest a minor role of eCO<span class="inline-formula"><sub>2</sub></span> on changes in global <span class="inline-formula"><i>Q</i></span> over 1982–2010, yet we highlight that a negative <span class="inline-formula"><i>Q</i></span>–eCO<span class="inline-formula"><sub>2</sub></span> response in semiarid and arid regions may further reduce the limited water resource there.</p>
url https://hess.copernicus.org/articles/25/3411/2021/hess-25-3411-2021.pdf
work_keys_str_mv AT yyang lowandcontrastingimpactsofvegetationcosub2subfertilizationonglobalterrestrialrunoffover19822010accountingforabovegroundandbelowgroundvegetationcosub2subeffects
AT trmcvicar lowandcontrastingimpactsofvegetationcosub2subfertilizationonglobalterrestrialrunoffover19822010accountingforabovegroundandbelowgroundvegetationcosub2subeffects
AT trmcvicar lowandcontrastingimpactsofvegetationcosub2subfertilizationonglobalterrestrialrunoffover19822010accountingforabovegroundandbelowgroundvegetationcosub2subeffects
AT dyang lowandcontrastingimpactsofvegetationcosub2subfertilizationonglobalterrestrialrunoffover19822010accountingforabovegroundandbelowgroundvegetationcosub2subeffects
AT yzhang lowandcontrastingimpactsofvegetationcosub2subfertilizationonglobalterrestrialrunoffover19822010accountingforabovegroundandbelowgroundvegetationcosub2subeffects
AT spiao lowandcontrastingimpactsofvegetationcosub2subfertilizationonglobalterrestrialrunoffover19822010accountingforabovegroundandbelowgroundvegetationcosub2subeffects
AT speng lowandcontrastingimpactsofvegetationcosub2subfertilizationonglobalterrestrialrunoffover19822010accountingforabovegroundandbelowgroundvegetationcosub2subeffects
AT hebeck lowandcontrastingimpactsofvegetationcosub2subfertilizationonglobalterrestrialrunoffover19822010accountingforabovegroundandbelowgroundvegetationcosub2subeffects
_version_ 1721374365161881600
spelling doaj-fed23f042dfc4c729272a9b757edd4b82021-06-17T06:53:15ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382021-06-01253411342710.5194/hess-25-3411-2021Low and contrasting impacts of vegetation CO<sub>2</sub> fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO<sub>2</sub> effectsY. Yang0T. R. McVicar1T. R. McVicar2D. Yang3Y. Zhang4S. Piao5S. Peng6H. E. Beck7State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, ChinaCSIRO Land and Water, Black Mountain, Canberra, ACT 2601, AustraliaAustralian Research Council Centre of Excellence for Climate Extremes, The Australian National University, Canberra, AustraliaState Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, ChinaKey Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, ChinaSino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, ChinaSino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, ChinaDepartment of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, USA<p>Elevation in atmospheric carbon dioxide concentration (eCO<span class="inline-formula"><sub>2</sub></span>) affects vegetation water use, with consequent impacts on terrestrial runoff (<span class="inline-formula"><i>Q</i></span>). However, the sign and magnitude of the eCO<span class="inline-formula"><sub>2</sub></span> effect on <span class="inline-formula"><i>Q</i></span> are still contentious. This is partly due to eCO<span class="inline-formula"><sub>2</sub></span>-induced changes in vegetation water use having opposing responses at the leaf scale (i.e., water-saving effect caused by partially stomatal closure) and the canopy scale (i.e., water-consuming induced by foliage cover increase), leading to highly debated conclusions among existing studies. In addition, none of the existing studies explicitly account for eCO<span class="inline-formula"><sub>2</sub></span>-induced changes to plant rooting depth that is overwhelmingly found in experimental observations. Here we develop an analytical ecohydrological framework that includes the effects of eCO<span class="inline-formula"><sub>2</sub></span> on plant leaf, canopy density, and rooting characteristics to attribute changes in <span class="inline-formula"><i>Q</i></span> and to detect the eCO<span class="inline-formula"><sub>2</sub></span> signal on <span class="inline-formula"><i>Q</i></span> via vegetation feedbacks over 1982–2010. Globally, we detect a very small decrease of <span class="inline-formula"><i>Q</i></span> induced by eCO<span class="inline-formula"><sub>2</sub></span> during 1982–2010 (<span class="inline-formula">−</span>1.7 %). Locally, we find a small positive trend (<span class="inline-formula"><i>p</i></span> <span class="inline-formula"><i>&lt;</i></span> 0.01) in the <span class="inline-formula"><i>Q</i></span>–eCO<span class="inline-formula"><sub>2</sub></span> response along a resource availability (<span class="inline-formula"><i>β</i></span>) gradient. Specifically, the <span class="inline-formula"><i>Q</i></span>–eCO<span class="inline-formula"><sub>2</sub></span> response is found to be negative (i.e., eCO<span class="inline-formula"><sub>2</sub></span> reduces <span class="inline-formula"><i>Q</i></span>) in low-<span class="inline-formula"><i>β</i></span> regions (typically dry and/or cold) and gradually changes to a small positive response (i.e., eCO<span class="inline-formula"><sub>2</sub></span> increases <span class="inline-formula"><i>Q</i></span>) in high-<span class="inline-formula"><i>β</i></span> areas (typically warm and humid). Our findings suggest a minor role of eCO<span class="inline-formula"><sub>2</sub></span> on changes in global <span class="inline-formula"><i>Q</i></span> over 1982–2010, yet we highlight that a negative <span class="inline-formula"><i>Q</i></span>–eCO<span class="inline-formula"><sub>2</sub></span> response in semiarid and arid regions may further reduce the limited water resource there.</p>https://hess.copernicus.org/articles/25/3411/2021/hess-25-3411-2021.pdf