Pathogenicity Induced by Invasive Infection of Streptococcus dysgalactiae subsp. equisimilis in a Mouse Model of Diabetes

Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes severe invasive diseases such as streptococcal toxic shock syndrome, similar to that caused by S. pyogenes (GAS). Invasive SDSE infections are increasing, particularly among patients with diabetes mellitus. Here we investigate the associati...

Full description

Bibliographic Details
Main Authors: Kohei Ogura, Kayo Okumura, Yukiko Shimizu, Teruo Kirikae, Tohru Miyoshi-Akiyama
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-09-01
Series:Frontiers in Microbiology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fmicb.2018.02128/full
Description
Summary:Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes severe invasive diseases such as streptococcal toxic shock syndrome, similar to that caused by S. pyogenes (GAS). Invasive SDSE infections are increasing, particularly among patients with diabetes mellitus. Here we investigate the association between the pathogenicity of SDSE and diabetes mellitus in a mouse model, using GAS infection for comparison. Intraperitoneal injection of highly hemolytic SDSE-167 into C57BL6/J mice induced a rapid rise in blood glucose concentrations within 4 h, which was otherwise seen only in mice injected with high doses of hypervirulent GAS mutants. The survival rates of mice injected with SDSE-167 were significantly lower in mice (db/db) with type 2 diabetes than in nondiabetic mice. Injection of db/db mice with SDSE-167 increased the concentrations of cytokines and chemokines, particularly those of interleukin 6 and monocyte chemotactic protein-1. Microarray data indicate that multiple pathways are involved in the pathogenicity of SDSE-167 in db/db mice. These data reveal that the mechanisms underlying streptococcal infection differ between SDSE and GAS.
ISSN:1664-302X