Numerical Model for Cavitational Flow in Hydraulic Poppet Valves

The paper presents a numerical simulation and analysis of the flow inside a poppet valve. First, the single-phase (liquid) flow is investigated, and an original model is introduced for quantitatively describing the vortex flow. Since an atmospheric outlet pressure produces large negative absolute pr...

Full description

Bibliographic Details
Main Authors: Sandor I. Bernad, Romeo Susan-Resiga
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Modelling and Simulation in Engineering
Online Access:http://dx.doi.org/10.1155/2012/742162
Description
Summary:The paper presents a numerical simulation and analysis of the flow inside a poppet valve. First, the single-phase (liquid) flow is investigated, and an original model is introduced for quantitatively describing the vortex flow. Since an atmospheric outlet pressure produces large negative absolute pressure regions, a two-phase (cavitating) flow analysis is also performed. Both pressure and density distributions inside the cavity are presented, and a comparison with the liquid flow results is performed. It is found that if one defines the cavity radius such that up to this radius the pressure is no larger than the vaporization pressure, then both liquid and cavitating flow models predict the cavity extent. The current effort is based on the application of the recently developed full cavitation model that utilizes the modified Rayleigh-Plesset equations for bubble dynamics.
ISSN:1687-5591
1687-5605