Dark-Soliton Molecules in an Exciton-Polariton Superfluid

The general theory of dark solitons relies on repulsive interactions and, therefore, predicts the impossibility to form dark-soliton bound states. One important exception to this prediction is the observation of bound solitons in nonlocal nonlinear media. Here, we report that exciton-polariton super...

Full description

Bibliographic Details
Main Authors: Anne Maître, Giovanni Lerario, Adrià Medeiros, Ferdinand Claude, Quentin Glorieux, Elisabeth Giacobino, Simon Pigeon, Alberto Bramati
Format: Article
Language:English
Published: American Physical Society 2020-11-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.10.041028
Description
Summary:The general theory of dark solitons relies on repulsive interactions and, therefore, predicts the impossibility to form dark-soliton bound states. One important exception to this prediction is the observation of bound solitons in nonlocal nonlinear media. Here, we report that exciton-polariton superfluids can also sustain dark-soliton molecules, although the interactions are fully local. With a novel all-optical technique, we create two dark solitons that bind together to form an unconventional dark-soliton molecule. We demonstrate that the stability of this structure and the separation distance between two dark solitons is tightly connected to the driven-dissipative nature of the polariton fluid.
ISSN:2160-3308