Seamless Integration of Rainfall Spatial Variability and a Conceptual Hydrological Model

Rainfall is an important input to conceptual hydrological models, and its accuracy would have a considerable effect on that of the model simulations. However, traditional conceptual rainfall-runoff models commonly use catchment-average rainfall as inputs without recognizing its spatial variability....

Full description

Bibliographic Details
Main Authors: Yan Zhou, Zhongmin Liang, Binquan Li, Yixin Huang, Kai Wang, Yiming Hu
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/13/6/3588
Description
Summary:Rainfall is an important input to conceptual hydrological models, and its accuracy would have a considerable effect on that of the model simulations. However, traditional conceptual rainfall-runoff models commonly use catchment-average rainfall as inputs without recognizing its spatial variability. To solve this, a seamless integration framework that couples rainfall spatial variability with a conceptual rainfall-runoff model, named the statistical rainfall-runoff (SRR) model, is built in this study. In the SRR model, the exponential difference distribution (EDD) is proposed to describe the spatial variability of rainfall for traditional rain gauging stations. The EDD is then incorporated into the vertically mixed runoff (VMR) model to estimate the statistical runoff component. Then, the stochastic differential equation is adopted to deal with the flow routing under stochastic inflow. To test the performance, the SRR model is then calibrated and validated in a Chinese catchment. The results indicate that the EDD performs well in describing rainfall spatial variability, and that the SRR model is superior to the Xinanjiang model because it provides more accurate mean simulations. The seamless integration framework considering rainfall spatial variability can help build a more reasonable statistical rainfall-runoff model.
ISSN:2071-1050