Multiple antenna system and channel estimation for multiband orthogonal frequency division multiplexing in ultra-wideband systems

Multiband Orthogonal Frequency Division Multiplexing (OFDM) has been deployed for practical implementation of low cost and low power Ultra-Wideband (UWB) devices due to its ability to mitigate the narrowband interference and multipath fading effects. In order to achieve high data rates, the deployme...

Full description

Bibliographic Details
Main Author: Mohamad Anas, Nuzli (Author)
Format: Thesis
Published: 2013-09.
Subjects:
Online Access:Get fulltext
Description
Summary:Multiband Orthogonal Frequency Division Multiplexing (OFDM) has been deployed for practical implementation of low cost and low power Ultra-Wideband (UWB) devices due to its ability to mitigate the narrowband interference and multipath fading effects. In order to achieve high data rates, the deployment of multiple antenna techniques into a UWB system has gained considerable research interest. In a UWB system, both the spatial and multipath diversities exist in UWB system can be exploited via the use of Multiple-Input Multiple-Output (MIMO) antenna system and Space-Time Codes (STC) by leveraging Alamouti scheme. This work shows that MIMO system outperforms Alamouti technique in providing a power combining gain in the receiver. Given that channel estimation for timefrequency multiplexed such as a multiband OFDM system is unexplored largely, this thesis also addresses this issue. In literature, most of the conventional Channel Frequency Response (CFR) estimations require either pre-storing a large matrix or performing real-time matrix inversion. In general, these requirements are prohibitive for practical implementation of UWB devices. In this thesis, the implementation issues of STC-based on Alamouti scheme are investigated for the multiband OFDM system. The research quantifies and analyses existing channel estimation in frequency domain such as Least-Square (LS) and Minimum Mean Square Error (MMSE) techniques. Consequently, low-complexity channel estimation based on Singular Value Decomposition (SVD) technique is developed for multiband OFDM system evaluates under modified Saleh-Valuenzela (S-V) channel modelling represents the realistic wireless indoor environment. This work implies that the SVD technique gives an improvement of 3-5 dB compared to LS technique. Even though SVD performs similarly to MMSE, it managed to reduce significantly the complexity by or to 57.8%.