Design of floating water wheel for power generation

Floating water wheel could harvest energy from shallow flowing river to increase the potential of hydropower. Various types of water wheels have been studied by other researchers. However, the details of the design such as ridge/blade profile, number of ridges and submerged depth of floating water w...

Full description

Bibliographic Details
Main Author: Chong Hooi, Lim (Author)
Format: Thesis
Published: 2013-08.
Subjects:
Online Access:Get fulltext
LEADER 01741 am a22001573u 4500
001 39746
042 |a dc 
100 1 0 |a Chong Hooi, Lim  |e author 
245 0 0 |a Design of floating water wheel for power generation 
260 |c 2013-08. 
520 |a Floating water wheel could harvest energy from shallow flowing river to increase the potential of hydropower. Various types of water wheels have been studied by other researchers. However, the details of the design such as ridge/blade profile, number of ridges and submerged depth of floating water wheel have not been clearly established. In this research, experiments were carried out in an aquarium to study the optimum number of ridges, submerged depth and four different ridge profiles for a laboratory-scale floating water wheel. The results showed different ridge profiles and pitches and submerged depths contribute significant effects to the rotation of floating water wheel. The result of the experiment was used as reference for prototype design and fabrication. The prototype was tested in a river and successfully produced voltage from the flowing river. The experiment shows that the optimum number of ridges is 13, the best profile is thin flat ridge and maintaining the floating water wheel at certain submerged depth is important to its performance. The prototype concept is suitable for low head flow and varying water level. It is also portable, easily assembled and maintained and able to convert the kinetic energy of the water current into electrical energy. 
546 |a en 
650 0 4 |a TJ Mechanical engineering and machinery 
655 7 |a Thesis 
787 0 |n http://eprints.utm.my/id/eprint/39746/ 
856 |z Get fulltext  |u http://eprints.utm.my/id/eprint/39746/5/LimChongHooiMFKM2013.pdf