520 |
|
|
|a Indoor navigation is important for various applications such as disaster management, building modelling and safety analysis. In the last decade, the indoor environment has been a focus of extensive research that includes the development of indoor data acquisition techniques, three-dimensional (3D) data modelling and indoor navigation. 3D indoor navigation modelling requires a valid 3D geometrical model that can be represented as a cell complex: a model without any gap or intersection such that the two cells, a room and corridor, should perfectly touch each other. This research is to develop a method for 3D topological modelling of an indoor navigation network using a geometrical model of an indoor building environment. To reduce the time and cost of the surveying process, a low-cost non-contact range-based surveying technique was used to acquire indoor building data. This technique is rapid as it requires a shorter time than others, but the results show inconsistencies in the horizontal angles for short distances in indoor environments. The rangefinder was calibrated using the least squares adjustment and a polynomial kernel. A method of combined interval analysis and homotopy continuation was developed to model the uncertainty level and minimize error of the non-contact range-based surveying techniques used in an indoor building environment. Finally, a method of 3D indoor topological building modelling was developed as a base for building models which include 3D geometry, topology and semantic information. The developed methods in this research can locate a low-cost, efficient and affordable procedure for developing a disaster management system in the near-future.
|