Sustaining dry surfaces under water

Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanis...

Full description

Bibliographic Details
Main Authors: Jones, Paul R. (Author), Hao, Xiuqing (Author), Cruz-Chu, Eduardo R. (Author), Rykaczewski, Konrad (Author), Nandy, Krishanu (Author), Schutzius, Thomas M. (Author), Varanasi, Kripa K. (Contributor), Megaridis, Constantine M. (Author), Walther, Jens H. (Author), Koumoutsakos, Petros (Author), Espinosa, Horacio D. (Author), Patankar, Neelesh A. (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2015-12-28T13:26:13Z.
Subjects:
Online Access:Get fulltext
LEADER 02001 am a22003013u 4500
001 100527
042 |a dc 
100 1 0 |a Jones, Paul R.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Varanasi, Kripa K.  |e contributor 
700 1 0 |a Hao, Xiuqing  |e author 
700 1 0 |a Cruz-Chu, Eduardo R.  |e author 
700 1 0 |a Rykaczewski, Konrad  |e author 
700 1 0 |a Nandy, Krishanu  |e author 
700 1 0 |a Schutzius, Thomas M.  |e author 
700 1 0 |a Varanasi, Kripa K.  |e author 
700 1 0 |a Megaridis, Constantine M.  |e author 
700 1 0 |a Walther, Jens H.  |e author 
700 1 0 |a Koumoutsakos, Petros  |e author 
700 1 0 |a Espinosa, Horacio D.  |e author 
700 1 0 |a Patankar, Neelesh A.  |e author 
245 0 0 |a Sustaining dry surfaces under water 
260 |b Nature Publishing Group,   |c 2015-12-28T13:26:13Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/100527 
520 |a Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. 
546 |a en_US 
655 7 |a Article 
773 |t Scientific Reports