Foldable and Cytocompatible Sol-gel TiO[subscript 2] Photonics

Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications r...

Full description

Bibliographic Details
Main Authors: Li, Lan (Author), Zhang, Ping (Author), Wang, Wei-Ming (Author), Lin, Hongtao (Author), Zerdoum, Aidan B. (Author), Geiger, Sarah J. (Author), Liu, Yangchen (Author), Xiao, Nicholas (Author), Zou, Yi (Author), Ogbuu, Okechukwu (Author), Du, Qingyang (Author), Jia, Xinqiao (Author), Li, Jingjing (Author), Hu, Juejun (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2015-12-28T15:25:25Z.
Subjects:
Online Access:Get fulltext
LEADER 02753 am a22003493u 4500
001 100534
042 |a dc 
100 1 0 |a Li, Lan  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Hu, Juejun  |e contributor 
700 1 0 |a Zhang, Ping  |e author 
700 1 0 |a Wang, Wei-Ming  |e author 
700 1 0 |a Lin, Hongtao  |e author 
700 1 0 |a Zerdoum, Aidan B.  |e author 
700 1 0 |a Geiger, Sarah J.  |e author 
700 1 0 |a Liu, Yangchen  |e author 
700 1 0 |a Xiao, Nicholas  |e author 
700 1 0 |a Zou, Yi  |e author 
700 1 0 |a Ogbuu, Okechukwu  |e author 
700 1 0 |a Du, Qingyang  |e author 
700 1 0 |a Jia, Xinqiao  |e author 
700 1 0 |a Li, Jingjing  |e author 
700 1 0 |a Hu, Juejun  |e author 
245 0 0 |a Foldable and Cytocompatible Sol-gel TiO[subscript 2] Photonics 
260 |b Nature Publishing Group,   |c 2015-12-28T15:25:25Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/100534 
520 |a Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO[subscript 2] as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO[subscript 2] films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO[subscript 2] material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO[subscript 2] devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO[subscript 2] as a promising material platform for novel biophotonic devices. 
520 |a National Science Foundation (U.S.) (Award 1453218) 
520 |a National Institutes of Health (U.S.) (Award R01DC011377) 
546 |a en_US 
655 7 |a Article 
773 |t Scientific Reports