Effect of Upper-Ocean Evolution on Projected Trends in Tropical Cyclone Activity

Recent work has highlighted the possible importance of changing upper-ocean thermal and density stratification on observed and projected changes in tropical cyclone activity. Here seven CMIP phase 5 (CMIP5)-generation climate model simulations are downscaled under IPCC representative concentration p...

Full description

Bibliographic Details
Main Author: Emanuel, Kerry Andrew (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences (Contributor), Lorenz Center (Massachusetts Institute of Technology) (Contributor)
Format: Article
Language:English
Published: American Meteorological Society, 2016-04-19T14:52:10Z.
Subjects:
Online Access:Get fulltext
Description
Summary:Recent work has highlighted the possible importance of changing upper-ocean thermal and density stratification on observed and projected changes in tropical cyclone activity. Here seven CMIP phase 5 (CMIP5)-generation climate model simulations are downscaled under IPCC representative concentration pathway 8.5 using a coupled atmosphere-ocean tropical cyclone model, generating 100 events per year in the western North Pacific from 2006 to 2100. A control downscaling in which the upper-ocean thermal structure is fixed at its monthly values in the year 2006 is compared to one in which the upper ocean is allowed to evolve, as derived from the CMIP5 models. As found in earlier work, the thermal stratification generally increases as the climate warms, leading to increased ocean mixing-induced negative feedback on tropical cyclone intensity. While trends in the frequency of storms are unaffected, the increasing stratification of the upper ocean leads to a 13% reduction in the increase of tropical cyclone power dissipation over the twenty-first century, averaged across the seven climate models. Much of this reduction is associated with a moderation of the increase in the frequency of category-5 storms.
National Science Foundation (U.S.) (Grant 1342810)