Multiplexed Sequence Encoding: A Framework for DNA Communication

Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encodi...

Full description

Bibliographic Details
Main Authors: Zakeri, Bijan (Contributor), Carr, Peter A. (Contributor), Lu, Timothy K. (Contributor)
Other Authors: MIT Synthetic Biology Center (Contributor), Lincoln Laboratory (Contributor), Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: Public Library of Science, 2016-06-09T14:59:56Z.
Subjects:
Online Access:Get fulltext
LEADER 02739 am a22003133u 4500
001 103080
042 |a dc 
100 1 0 |a Zakeri, Bijan  |e author 
100 1 0 |a MIT Synthetic Biology Center  |e contributor 
100 1 0 |a Lincoln Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a Zakeri, Bijan  |e contributor 
100 1 0 |a Carr, Peter A.  |e contributor 
100 1 0 |a Lu, Timothy K.  |e contributor 
700 1 0 |a Carr, Peter A.  |e author 
700 1 0 |a Lu, Timothy K.  |e author 
245 0 0 |a Multiplexed Sequence Encoding: A Framework for DNA Communication 
260 |b Public Library of Science,   |c 2016-06-09T14:59:56Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/103080 
520 |a Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication-data encoding, data transfer & data extraction-and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system-Multiplexed Sequence Encoding (MuSE)-that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA. 
520 |a National Institutes of Health (U.S.) (NIH Grant 1R01EB017755) 
520 |a National Institutes of Health (U.S.) (NIH Grant 1DP2OD008435) 
520 |a National Institutes of Health (U.S.) (NIH Grant 1P50GM098792) 
520 |a United States. Defense Advanced Research Projects Agency (Air Force Contract #FA8721-05-C-0002) 
546 |a en_US 
655 7 |a Article 
773 |t PLOS ONE