Automatic identification of artifacts in electrodermal activity data

Recently, wearable devices have allowed for long term, ambulatory measurement of electrodermal activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can easily be mistaken for a physiological response during analysis, to date there is no automatic method fo...

Full description

Bibliographic Details
Main Authors: Taylor, Sara Ann (Contributor), Jaques, Natasha Mary (Contributor), Chen, Weixuan (Contributor), Fedor, Szymon (Contributor), Sano, Akane (Contributor), Picard, Rosalind W. (Contributor)
Other Authors: Massachusetts Institute of Technology. Media Laboratory (Contributor), Program in Media Arts and Sciences (Massachusetts Institute of Technology) (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2016-07-20T19:07:13Z.
Subjects:
Online Access:Get fulltext
LEADER 02217 am a22003613u 4500
001 103781
042 |a dc 
100 1 0 |a Taylor, Sara Ann  |e author 
100 1 0 |a Massachusetts Institute of Technology. Media Laboratory  |e contributor 
100 1 0 |a Program in Media Arts and Sciences   |q  (Massachusetts Institute of Technology)   |e contributor 
100 1 0 |a Taylor, Sara Ann  |e contributor 
100 1 0 |a Jaques, Natasha Mary  |e contributor 
100 1 0 |a Chen, Weixuan  |e contributor 
100 1 0 |a Fedor, Szymon  |e contributor 
100 1 0 |a Sano, Akane  |e contributor 
100 1 0 |a Picard, Rosalind W.  |e contributor 
700 1 0 |a Jaques, Natasha Mary  |e author 
700 1 0 |a Chen, Weixuan  |e author 
700 1 0 |a Fedor, Szymon  |e author 
700 1 0 |a Sano, Akane  |e author 
700 1 0 |a Picard, Rosalind W.  |e author 
245 0 0 |a Automatic identification of artifacts in electrodermal activity data 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2016-07-20T19:07:13Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/103781 
520 |a Recently, wearable devices have allowed for long term, ambulatory measurement of electrodermal activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can easily be mistaken for a physiological response during analysis, to date there is no automatic method for detecting artifacts. This paper describes the development of a machine learning algorithm for automatically detecting EDA artifacts, and provides an empirical evaluation of classification performance. We have encoded our results into a freely available web-based tool for artifact and peak detection. 
520 |a MIT Media Lab Consortium 
520 |a Samsung (Firm) 
520 |a National Institutes of Health (U.S.) (NIH grant R01GM105018) 
520 |a Natural Sciences and Engineering Research Council of Canada 
520 |a Seventh Framework Programme (European Commission) (People Programme (Marie Curie Actions), FP7/2007-2013/ under REA grant agreement #327702) 
546 |a en_US 
655 7 |a Article 
773 |t 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)