Quantitative Stochastic Homogenization of Elliptic Equations in Nondivergence Form

We introduce a new method for studying stochastic homogenization of elliptic equations in nondivergence form. The main application is an algebraic error estimate, asserting that deviations from the homogenized limit are at most proportional to a power of the microscopic length scale, assuming a fini...

Full description

Bibliographic Details
Main Authors: Armstrong, Scott N. (Author), Smart, Charles (Contributor)
Format: Article
Language:English
Published: Springer Berlin Heidelberg, 2016-11-04T17:12:22Z.
Subjects:
Online Access:Get fulltext
LEADER 01139 am a22001813u 4500
001 105198
042 |a dc 
100 1 0 |a Armstrong, Scott N.  |e author 
100 1 0 |a Smart, Charles  |e contributor 
700 1 0 |a Smart, Charles  |e author 
245 0 0 |a Quantitative Stochastic Homogenization of Elliptic Equations in Nondivergence Form 
260 |b Springer Berlin Heidelberg,   |c 2016-11-04T17:12:22Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/105198 
520 |a We introduce a new method for studying stochastic homogenization of elliptic equations in nondivergence form. The main application is an algebraic error estimate, asserting that deviations from the homogenized limit are at most proportional to a power of the microscopic length scale, assuming a finite range of dependence. The results are new even for linear equations. The arguments rely on a new geometric quantity which is controlled in part by adapting elements of the regularity theory for the Monge-Ampère equation. 
520 |a National Science Foundation (U.S.) (Grant DMS-1004595) 
546 |a en 
655 7 |a Article 
773 |t Archive for Rational Mechanics and Analysis