The Evolution of Carbon Nanotube Network Structure in Unidirectional Nanocomposites Resolved by Quantitative Electron Tomography

Carbon nanotube (CNT) reinforced polymers are next-generation, high-performance, multifunctional materials with a wide array of promising applications. The successful introduction of such materials is hampered by the lack of a quantitative understanding of process-structure-property relationships. T...

Full description

Bibliographic Details
Main Authors: Natarajan, Bharath (Author), Lam, Thomas (Author), Long, Christian (Author), Zhao, Minhua (Author), Sharma, Renu (Author), Liddle, J. Alexander (Author), Wardle, Brian L (Contributor), Lachman-Senesh, Noa (Contributor), Jacobs, Douglas S. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: American Chemical Society (ACS), 2016-12-22T15:32:08Z.
Subjects:
Online Access:Get fulltext
LEADER 02844 am a22004093u 4500
001 106030
042 |a dc 
100 1 0 |a Natarajan, Bharath  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Aeronautics and Astronautics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Wardle, Brian L  |e contributor 
100 1 0 |a Lachman-Senesh, Noa  |e contributor 
100 1 0 |a Jacobs, Douglas S.  |e contributor 
700 1 0 |a Lam, Thomas  |e author 
700 1 0 |a Long, Christian  |e author 
700 1 0 |a Zhao, Minhua  |e author 
700 1 0 |a Sharma, Renu  |e author 
700 1 0 |a Liddle, J. Alexander  |e author 
700 1 0 |a Wardle, Brian L  |e author 
700 1 0 |a Lachman-Senesh, Noa  |e author 
700 1 0 |a Jacobs, Douglas S.  |e author 
245 0 0 |a The Evolution of Carbon Nanotube Network Structure in Unidirectional Nanocomposites Resolved by Quantitative Electron Tomography 
260 |b American Chemical Society (ACS),   |c 2016-12-22T15:32:08Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/106030 
520 |a Carbon nanotube (CNT) reinforced polymers are next-generation, high-performance, multifunctional materials with a wide array of promising applications. The successful introduction of such materials is hampered by the lack of a quantitative understanding of process-structure-property relationships. These relationships can be developed only through the detailed characterization of the nanoscale reinforcement morphology within the embedding medium. Here, we reveal the three-dimensional (3D) nanoscale morphology of high volume fraction (Vf) aligned CNT/epoxy-matrix nanocomposites using energy-filtered electron tomography. We present an automated phase-identification method for fast, accurate, representative rendering of the CNT spatial arrangement in these low-contrast bimaterial systems. The resulting nanometer-scale visualizations provide quantitative information on the evolution of CNT morphology and dispersion state with increasing Vf, including network structure, CNT alignment, bundling and waviness. The CNTs are observed to exhibit a nonlinear increase in bundling and alignment and a decrease in waviness as a function of increasing Vf. Our findings explain previously observed discrepancies between the modeled and measured trends in bulk mechanical, electrical and thermal properties. The techniques we have developed for morphological quantitation are applicable to many low-contrast material systems. 
520 |a Airbus Group 
520 |a Boeing Company 
520 |a EMBRAER 
520 |a Lockheed Martin 
520 |a Saab (Firm) 
520 |a Hexcel (Firm) 
520 |a Toho Tenax 
520 |a ANSYS, Inc. 
520 |a NECST Consortium 
546 |a en_US 
655 7 |a Article 
773 |t ACS Nano