Strain-engineered diffusive atomic switching in two-dimensional crystals

Strain engineering is an emerging route for tuning the bandgap, carrier mobility, chemical reactivity and diffusivity of materials. Here we show how strain can be used to control atomic diffusion in van der Waals heterostructures of two-dimensional (2D) crystals. We use strain to increase the diffus...

Full description

Bibliographic Details
Main Authors: Kalikka, Janne (Contributor), Zhou, Xilin (Author), Dilcher, Eric (Author), Wall, Simon (Author), Li, Ju (Contributor), Simpson, Robert E. (Author)
Other Authors: Massachusetts Institute of Technology. Department of Nuclear Science and Engineering (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2016-12-28T19:44:45Z.
Subjects:
Online Access:Get fulltext
LEADER 02075 am a22002773u 4500
001 106165
042 |a dc 
100 1 0 |a Kalikka, Janne  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Nuclear Science and Engineering  |e contributor 
100 1 0 |a Kalikka, Janne  |e contributor 
100 1 0 |a Li, Ju  |e contributor 
700 1 0 |a Zhou, Xilin  |e author 
700 1 0 |a Dilcher, Eric  |e author 
700 1 0 |a Wall, Simon  |e author 
700 1 0 |a Li, Ju  |e author 
700 1 0 |a Simpson, Robert E.  |e author 
245 0 0 |a Strain-engineered diffusive atomic switching in two-dimensional crystals 
260 |b Nature Publishing Group,   |c 2016-12-28T19:44:45Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/106165 
520 |a Strain engineering is an emerging route for tuning the bandgap, carrier mobility, chemical reactivity and diffusivity of materials. Here we show how strain can be used to control atomic diffusion in van der Waals heterostructures of two-dimensional (2D) crystals. We use strain to increase the diffusivity of Ge and Te atoms that are confined to 5 Å thick 2D planes within an Sb[subscript 2]Te[subscript 3]-GeTe van der Waals superlattice. The number of quintuple Sb[subscript 2]Te[subscript 3] 2D crystal layers dictates the strain in the GeTe layers and consequently its diffusive atomic disordering. By identifying four critical rules for the superlattice configuration we lay the foundation for a generalizable approach to the design of switchable van der Waals heterostructures. As Sb[subscript 2]Te[subscript 3]-GeTe is a topological insulator, we envision these rules enabling methods to control spin and topological properties of materials in reversible and energy efficient ways. 
520 |a National Science Foundation (U.S.) (DMR-1410636 and DMR-1120901) 
520 |a SUTD-MIT International Design Centre (IDC) (Postdoctoral Fellowship) 
520 |a SUTD-MIT International Design Center (IDC) (Designer Chalcogenides IDSF1200108OH Research Project) 
546 |a en_US 
655 7 |a Article 
773 |t Nature Communications