A role for the bacterial GATC methylome in antibiotic stress survival

Antibiotic resistance is an increasingly serious public health threat1. Understanding pathways allowing bacteria to survive antibiotic stress may unveil new therapeutic targets. We explore the role of the bacterial epigenome in antibiotic stress survival using classical genetic tools and single-mole...

Full description

Bibliographic Details
Main Authors: Ross, Christian A (Author), Belenky, Peter (Author), Li, Hu (Author), Cohen, Nadia (Contributor), Jain, Saloni R. (Contributor), Gutierrez, Arnaud (Contributor), Collins, James J. (Contributor), Shapiro, Rebecca (Author)
Other Authors: Massachusetts Institute of Technology. Institute for Medical Engineering & Science (Contributor), Harvard University- (Contributor), Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Shapiro, Rebecca Sara (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2017-01-27T22:00:13Z.
Subjects:
Online Access:Get fulltext
LEADER 02832 am a22004093u 4500
001 106666
042 |a dc 
100 1 0 |a Ross, Christian A  |e author 
100 1 0 |a Massachusetts Institute of Technology. Institute for Medical Engineering & Science  |e contributor 
100 1 0 |a Harvard University-  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Cohen, Nadia  |e contributor 
100 1 0 |a Jain, Saloni R.  |e contributor 
100 1 0 |a Shapiro, Rebecca Sara  |e contributor 
100 1 0 |a Gutierrez, Arnaud  |e contributor 
100 1 0 |a Collins, James J.  |e contributor 
700 1 0 |a Belenky, Peter  |e author 
700 1 0 |a Li, Hu  |e author 
700 1 0 |a Cohen, Nadia  |e author 
700 1 0 |a Jain, Saloni R.  |e author 
700 1 0 |a Gutierrez, Arnaud  |e author 
700 1 0 |a Collins, James J.  |e author 
700 1 0 |a Shapiro, Rebecca  |e author 
245 0 0 |a A role for the bacterial GATC methylome in antibiotic stress survival 
260 |b Nature Publishing Group,   |c 2017-01-27T22:00:13Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/106666 
520 |a Antibiotic resistance is an increasingly serious public health threat1. Understanding pathways allowing bacteria to survive antibiotic stress may unveil new therapeutic targets. We explore the role of the bacterial epigenome in antibiotic stress survival using classical genetic tools and single-molecule real-time sequencing to characterize genomic methylation kinetics. We find that Escherichia coli survival under antibiotic pressure is severely compromised without adenine methylation at GATC sites. Although the adenine methylome remains stable during drug stress, without GATC methylation, methyl-dependent mismatch repair (MMR) is deleterious and, fueled by the drug-induced error-prone polymerase Pol IV, overwhelms cells with toxic DNA breaks. In multiple E. coli strains, including pathogenic and drug-resistant clinical isolates, DNA adenine methyltransferase deficiency potentiates antibiotics from the β-lactam and quinolone classes. This work indicates that the GATC methylome provides structural support for bacterial survival during antibiotic stress and suggests targeting bacterial DNA methylation as a viable approach to enhancing antibiotic activity. 
520 |a United States. Defense Threat Reduction Agency (Grant HDTRA1-15-1-0051) 
520 |a National Institutes of Health (U.S.) (Grant 1U54GM114838-01) 
520 |a Howard Hughes Medical Institute 
520 |a Canadian Institutes of Health Research (Banting Postdoctoral Fellowship) 
520 |a Wyss Institute for Biologically Inspired Engineering 
520 |a Mayo Clinic Center for Individualized Medicine 
520 |a Donors Cure Foundation 
546 |a en_US 
655 7 |a Article 
773 |t Nature Genetics