A split horseradish peroxidase for the detection of intercellular protein-protein interactions and sensitive visualization of synapses

Type 1 interferon (IFN) is a key mediator of organismal responses to pathogens, eliciting prototypical "interferon signature genes" that encode antiviral and inflammatory mediators. For a global view of IFN signatures and regulatory pathways, we performed gene expression and chromatin anal...

Full description

Bibliographic Details
Main Authors: Yamagata, Masahito (Author), Deerinck, Thomas J (Author), Phan, Sébastien (Author), Ellisman, Mark H (Author), Sanes, Joshua R (Author), Martell, Jeffrey Daniel (Contributor), Kwa, Carolyn (Contributor), Ting, Alice Y (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemistry (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2017-02-23T15:45:09Z.
Subjects:
Online Access:Get fulltext
LEADER 02464 am a22003253u 4500
001 107117
042 |a dc 
100 1 0 |a Yamagata, Masahito  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Martell, Jeffrey Daniel  |e contributor 
100 1 0 |a Kwa, Carolyn  |e contributor 
100 1 0 |a Ting, Alice Y  |e contributor 
700 1 0 |a Deerinck, Thomas J  |e author 
700 1 0 |a Phan, Sébastien  |e author 
700 1 0 |a Ellisman, Mark H  |e author 
700 1 0 |a Sanes, Joshua R  |e author 
700 1 0 |a Martell, Jeffrey Daniel  |e author 
700 1 0 |a Kwa, Carolyn  |e author 
700 1 0 |a Ting, Alice Y  |e author 
245 0 0 |a A split horseradish peroxidase for the detection of intercellular protein-protein interactions and sensitive visualization of synapses 
260 |b Nature Publishing Group,   |c 2017-02-23T15:45:09Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/107117 
520 |a Type 1 interferon (IFN) is a key mediator of organismal responses to pathogens, eliciting prototypical "interferon signature genes" that encode antiviral and inflammatory mediators. For a global view of IFN signatures and regulatory pathways, we performed gene expression and chromatin analyses of the IFN-induced response across a range of immunocyte lineages. These distinguished ISGs by cell-type specificity, kinetics, and sensitivity to tonic IFN and revealed underlying changes in chromatin configuration. We combined 1,398 human and mouse datasets to computationally infer ISG modules and their regulators, validated by genetic analysis in both species. Some ISGs are controlled by Stat1/2 and Irf9 and the ISRE DNA motif, but others appeared dependent on non-canonical factors. This regulatory framework helped to interpret JAK1 blockade pharmacology, different clusters being affected under tonic or IFN-stimulated conditions, and the IFN signatures previously associated with human diseases, revealing unrecognized subtleties in disease footprints, as affected by human ancestry. 
520 |a National Institutes of Health (U.S.) (Grant R01-CA186568-1) 
520 |a Howard Hughes Medical Institute (Collaborative Initiative Award) 
520 |a National Science Foundation (U.S.). Graduate Research Fellowship Program 
520 |a American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship 
546 |a en_US 
655 7 |a Article 
773 |t Nature Biotechnology