The lightest organic radical cation for charge storage in redox flow batteries

In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of...

Full description

Bibliographic Details
Main Authors: Huang, Jinhua (Author), Pan, Baofei (Author), Duan, Wentao (Author), Wei, Xiaoliang (Author), Assary, Rajeev S. (Author), Su, Liang (Author), Cheng, Lei (Author), Liao, Chen (Author), Ferrandon, Magali S. (Author), Wang, Wei (Author), Zhang, Zhengcheng (Author), Burrell, Anthony K. (Author), Curtiss, Larry A. (Author), Shkrob, Ilya A. (Author), Moore, Jeffrey S. (Author), Zhang, Lu (Author), Brushett, Fikile R (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2017-04-24T19:11:44Z.
Subjects:
Online Access:Get fulltext
LEADER 02295 am a22003733u 4500
001 108381
042 |a dc 
100 1 0 |a Huang, Jinhua  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Brushett, Fikile R  |e contributor 
700 1 0 |a Pan, Baofei  |e author 
700 1 0 |a Duan, Wentao  |e author 
700 1 0 |a Wei, Xiaoliang  |e author 
700 1 0 |a Assary, Rajeev S.  |e author 
700 1 0 |a Su, Liang  |e author 
700 1 0 |a Cheng, Lei  |e author 
700 1 0 |a Liao, Chen  |e author 
700 1 0 |a Ferrandon, Magali S.  |e author 
700 1 0 |a Wang, Wei  |e author 
700 1 0 |a Zhang, Zhengcheng  |e author 
700 1 0 |a Burrell, Anthony K.  |e author 
700 1 0 |a Curtiss, Larry A.  |e author 
700 1 0 |a Shkrob, Ilya A.  |e author 
700 1 0 |a Moore, Jeffrey S.  |e author 
700 1 0 |a Zhang, Lu  |e author 
700 1 0 |a Brushett, Fikile R  |e author 
245 0 0 |a The lightest organic radical cation for charge storage in redox flow batteries 
260 |b Nature Publishing Group,   |c 2017-04-24T19:11:44Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/108381 
520 |a In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a minimalistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. The observed stability trends are rationalized by mechanistic considerations of the reaction pathways. 
520 |a United States. Dept. of Energy. Office of Basic Energy Sciences. Chemical Sciences, Geosciences, & Biosciences Division (Contract DE-AC02-06CH11357) 
546 |a en_US 
655 7 |a Article 
773 |t Scientific Reports