A Quantum Version of Schoening's Algorithm Applied to Quantum 2-Sat

We study a quantum algorithm that consists of a simple quantum Markov process, and we analyze its behavior on restricted versions of Quantum 2-SAT. We prove that the algorithm solves this decision problem with high probability for n qubits, L clauses, and promise gap c in time O(n[superscript 2]L[su...

Full description

Bibliographic Details
Main Authors: Kimmel, Shelby (Author), Temme, Kristan (Author), Farhi, Edward H (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: Rinton Press, 2017-04-26T14:06:22Z.
Subjects:
Online Access:Get fulltext
LEADER 01302 am a22002053u 4500
001 108412
042 |a dc 
100 1 0 |a Kimmel, Shelby  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Farhi, Edward H  |e contributor 
700 1 0 |a Temme, Kristan  |e author 
700 1 0 |a Farhi, Edward H  |e author 
245 0 0 |a A Quantum Version of Schoening's Algorithm Applied to Quantum 2-Sat 
246 3 3 |a A Quantum Version of Schoning's Algorithm Applied to Quantum 2-Sat 
260 |b Rinton Press,   |c 2017-04-26T14:06:22Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/108412 
520 |a We study a quantum algorithm that consists of a simple quantum Markov process, and we analyze its behavior on restricted versions of Quantum 2-SAT. We prove that the algorithm solves this decision problem with high probability for n qubits, L clauses, and promise gap c in time O(n[superscript 2]L[superscript 2]c[superscript −2]). If the Hamiltonian is additionally polynomially gapped, our algorithm efficiently produces a state that has high overlap with the satisfying subspace. The Markov process we study is a quantum analogue of Sch¨oning's probabilistic algorithm for k-SAT. 
546 |a en_US 
655 7 |a Article 
773 |t Quantum Information & Computation