Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer

Shock waves in condensed matter are of great importance for many areas of science and technology ranging from inertially confined fusion to planetary science and medicine. In laboratory studies of shock waves, there is a need in developing diagnostic techniques capable of measuring parameters of mat...

Full description

Bibliographic Details
Main Authors: Pezeril, Thomas (Author), Veysset, David Georges (Contributor), Maznev, Alexei (Contributor), Kooi, Steven E (Contributor), Nelson, Keith Adam (Contributor)
Other Authors: Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contributor), Massachusetts Institute of Technology. Department of Chemistry (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2017-04-26T16:23:35Z.
Subjects:
Online Access:Get fulltext
LEADER 02269 am a22002773u 4500
001 108420
042 |a dc 
100 1 0 |a Pezeril, Thomas  |e author 
100 1 0 |a Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Veysset, David Georges  |e contributor 
100 1 0 |a Maznev, Alexei  |e contributor 
100 1 0 |a Kooi, Steven E  |e contributor 
100 1 0 |a Nelson, Keith Adam  |e contributor 
700 1 0 |a Veysset, David Georges  |e author 
700 1 0 |a Maznev, Alexei  |e author 
700 1 0 |a Kooi, Steven E  |e author 
700 1 0 |a Nelson, Keith Adam  |e author 
245 0 0 |a Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer 
260 |b Nature Publishing Group,   |c 2017-04-26T16:23:35Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/108420 
520 |a Shock waves in condensed matter are of great importance for many areas of science and technology ranging from inertially confined fusion to planetary science and medicine. In laboratory studies of shock waves, there is a need in developing diagnostic techniques capable of measuring parameters of materials under shock with high spatial resolution. Here, time-resolved interferometric imaging is used to study laser-driven focusing shock waves in a thin liquid layer in an all-optical experiment. Shock waves are generated in a 10 µm-thick layer of water by focusing intense picosecond laser pulses into a ring of 95 µm radius. Using a Mach-Zehnder interferometer and time-delayed femtosecond laser pulses, we obtain a series of images tracing the shock wave as it converges at the center of the ring before reemerging as a diverging shock, resulting in the formation of a cavitation bubble. Through quantitative analysis of the interferograms, density profiles of shocked samples are extracted. The experimental geometry used in our study opens prospects for spatially resolved spectroscopic studies of materials under shock compression. 
520 |a Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001) 
546 |a en_US 
655 7 |a Article 
773 |t Scientific Reports