New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg[subscript 2]S[subscript n1−x−y]Ge[subscript x]Sb[subscript y]

Historically, a material parameter B incorporating weighted mobility and lattice thermal conductivity has guided the exploration of novel thermoelectric materials. However, the conventional definition of B neglects the bipolar effect which can dramatically change the thermoelectric energy conversion...

Full description

Bibliographic Details
Main Authors: Liu, Weishu (Author), Zhou, Jiawei (Contributor), Jie, Qing (Author), Li, Yang (Author), Kim, Hee Seok (Author), Bao, Jiming (Author), Chen, Gang (Contributor), Ren, Zhifeng (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: Royal Society of Chemistry, 2017-05-01T18:22:56Z.
Subjects:
Online Access:Get fulltext
LEADER 02782 am a22003013u 4500
001 108547
042 |a dc 
100 1 0 |a Liu, Weishu  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Chen, Gang  |e contributor 
100 1 0 |a Zhou, Jiawei  |e contributor 
100 1 0 |a Chen, Gang  |e contributor 
700 1 0 |a Zhou, Jiawei  |e author 
700 1 0 |a Jie, Qing  |e author 
700 1 0 |a Li, Yang  |e author 
700 1 0 |a Kim, Hee Seok  |e author 
700 1 0 |a Bao, Jiming  |e author 
700 1 0 |a Chen, Gang  |e author 
700 1 0 |a Ren, Zhifeng  |e author 
245 0 0 |a New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg[subscript 2]S[subscript n1−x−y]Ge[subscript x]Sb[subscript y] 
246 3 3 |a New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg2Sn1−x−yGexSby 
260 |b Royal Society of Chemistry,   |c 2017-05-01T18:22:56Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/108547 
520 |a Historically, a material parameter B incorporating weighted mobility and lattice thermal conductivity has guided the exploration of novel thermoelectric materials. However, the conventional definition of B neglects the bipolar effect which can dramatically change the thermoelectric energy conversion efficiency at high temperatures. In this paper, a generalized material parameter B* is derived, which connects weighted mobility, lattice thermal conductivity, and the band gap. Based on the new parameter B*, we explain the successful tuning of the electron and phonon transport in Mg[subscript 2]S[subscript n1−x−y]Ge[subscript x]Sb[subscript y], with an improved ZT value from 0.6 in Mg[subscript 2]Sn[subscript 0.99]Sb[subscript 0.01] to 1.4 in Mg[subscript 2]Sn[subscript 0.73]Ge[subscript 0.25]Sb[subscript 0.02]. We uncover that the Ge alloying approach simultaneously improves all the key variables in the material parameter B*, with an ∼25% enhancement in the weighted mobility, ∼27% band gap widening, and ∼50% reduction in the lattice thermal conductivity. We show that a higher generalized parameter B* leads to a higher optimized ZT in Mg[subscript 2]Sn[subscript 0.73]Ge[subscript 0.25]Sb[subscript 0.02], and some common thermoelectric materials. The new parameter B* provides a better characterization of material's thermoelectric transport, particularly at high temperatures, and therefore can facilitate the search for good thermoelectric materials. 
520 |a United States. Department of Energy. Office of Science. Solid-State Solar Thermal Energy Conversion Center (Award DE-SC0001299/DE-FG02-09ER46577) 
546 |a en_US 
655 7 |a Article 
773 |t Energy and Environmental Science