Shape of retracting foils that model morphing bodies controls shed energy and wake structure

The flow mechanisms of shape-changing moving bodies are investigated through the simple model of a foil that is rapidly retracted over a spanwise distance as it is towed at constant angle of attack. It is shown experimentally and through simulation that by altering the shape of the tip of the retrac...

Full description

Bibliographic Details
Main Authors: Dahl, J. M. (Author), Weymouth, G. D. (Author), Triantafyllou, Michael S (Contributor), Steele, Stephanie C. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor), Triantafyllou, Michael S. (Contributor)
Format: Article
Language:English
Published: Cambridge University Press, 2017-07-24T20:10:49Z.
Subjects:
Online Access:Get fulltext
LEADER 02387 am a22002293u 4500
001 110828
042 |a dc 
100 1 0 |a Dahl, J. M.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Triantafyllou, Michael S.  |e contributor 
100 1 0 |a Triantafyllou, Michael S  |e contributor 
100 1 0 |a Steele, Stephanie C.  |e contributor 
700 1 0 |a Weymouth, G. D.  |e author 
700 1 0 |a Triantafyllou, Michael S  |e author 
700 1 0 |a Steele, Stephanie C.  |e author 
245 0 0 |a Shape of retracting foils that model morphing bodies controls shed energy and wake structure 
260 |b Cambridge University Press,   |c 2017-07-24T20:10:49Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/110828 
520 |a The flow mechanisms of shape-changing moving bodies are investigated through the simple model of a foil that is rapidly retracted over a spanwise distance as it is towed at constant angle of attack. It is shown experimentally and through simulation that by altering the shape of the tip of the retracting foil, different shape-changing conditions may be reproduced, corresponding to: (i) a vanishing body, (ii) a deflating body and (iii) a melting body. A sharp-edge, 'vanishing-like' foil manifests strong energy release to the fluid; however, it is accompanied by an additional release of energy, resulting in the formation of a strong ring vortex at the sharp tip edges of the foil during the retracting motion. This additional energy release introduces complex and quickly evolving vortex structures. By contrast, a streamlined, 'shrinking-like' foil avoids generating the ring vortex, leaving a structurally simpler wake. The 'shrinking' foil also recovers a large part of the initial energy from the fluid, resulting in much weaker wake structures. Finally, a sharp edged but hollow, 'melting-like' foil provides an energetic wake while avoiding the generation of a vortex ring. As a result, a melting-like body forms a simple and highly energetic and stable wake, that entrains all of the original added mass fluid energy. The three conditions studied correspond to different modes of flow control employed by aquatic animals and birds, and encountered in disappearing bodies, such as rising bubbles undergoing phase change to fluid. 
546 |a en_US 
655 7 |a Article 
773 |t Journal of Fluid Mechanics