Backward-forward search for manipulation planning

In this paper we address planning problems in high-dimensional hybrid configuration spaces, with a particular focus on manipulation planning problems involving many objects. We present the hybrid backward-forward (HBF) planning algorithm that uses a backward identification of constraints to direct t...

Full description

Bibliographic Details
Main Authors: Garrett, Caelan Reed (Contributor), Lozano-Perez, Tomas (Contributor), Kaelbling, Leslie P (Contributor)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2017-10-03T18:36:12Z.
Subjects:
Online Access:Get fulltext
LEADER 01704 am a22002533u 4500
001 111683
042 |a dc 
100 1 0 |a Garrett, Caelan Reed  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Garrett, Caelan Reed  |e contributor 
100 1 0 |a Lozano-Perez, Tomas  |e contributor 
100 1 0 |a Kaelbling, Leslie P  |e contributor 
700 1 0 |a Lozano-Perez, Tomas  |e author 
700 1 0 |a Kaelbling, Leslie P  |e author 
245 0 0 |a Backward-forward search for manipulation planning 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2017-10-03T18:36:12Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/111683 
520 |a In this paper we address planning problems in high-dimensional hybrid configuration spaces, with a particular focus on manipulation planning problems involving many objects. We present the hybrid backward-forward (HBF) planning algorithm that uses a backward identification of constraints to direct the sampling of the infinite action space in a forward search from the initial state towards a goal configuration. The resulting planner is probabilistically complete and can effectively construct long manipulation plans requiring both prehensile and nonprehensile actions in cluttered environments. 
520 |a United States. Office of Naval Research (Grant N00014-14-1-0486) 
520 |a United States. Air Force Office of Scientific Research (Grant FA23861014135) 
520 |a United States. Army Research Office (Grant W911NF1410433) 
546 |a en_US 
655 7 |a Article 
773 |t 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)